催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2231-2239.DOI: 10.1016/S1872-2067(21)64031-7

• 论文 • 上一篇    下一篇

界面诱导策略构建和提升生物质基多孔炭本征活性位

张文娟a, 景培a, 杜娟b, 吴淑杰a, 闫文付a, 刘钢a,*()   

  1. a吉林大学化学学院, 无机合成与制备化学国家重点实验室, 吉林长春130012
    b吉林师范大学环境友好材料制备与应用教育部重点实验室, 吉林长春130103
  • 收稿日期:2022-01-13 接受日期:2022-02-05 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 刘钢
  • 基金资助:
    国家自然科学基金(22072054);国家自然科学基金(21972053);吉林省科技发展计划(20170101171JC);吉林省科技发展计划(20180201068SF);无机合成与制备化学国家重点实验室开放课题(202105);吉林师范大学环境友好材料制备与应用教育部重点实验室开放课题(2020009)

Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites

Wenjuan Zhanga, Pei Jinga, Juan Dub, Shujie Wua, Wenfu Yana, Gang Liua,*()   

  1. aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
    bKey Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, Jilin, China
  • Received:2022-01-13 Accepted:2022-02-05 Online:2022-08-18 Published:2022-06-20
  • Contact: Gang Liu
  • About author:Prof. Gang Liu (College of Chemistry, Jilin University) received his B.A. (2002) and Ph.D. (2007) from College of Chemistry, Jilin University. He joined the same college and was promoted to full professor in 2019. He did postdoctoral research on photocatalysis at Dalian Institute of Chemical Physics (Chinese Academy of Sciences) and was a visiting professor at Dalhousie University (Canada). Currently, he is the director of the Department of Physical Chemistry. He has published more than 70 refereed papers and 10 patents, and two patents are being used commercially in industrial processes. He has won some awards, such as Science and Technology Progress Awards of Jilin Province and The Young Talent Award from Tang Auchin Foundation. His current scientific interests are focused on selective catalytic oxidation and energy photocatalysis. He was invited as a young member of the 5th and 6th Editorial Board of Chin. J. Catal.
  • Supported by:
    National Science Foundation of China(22072054);National Science Foundation of China(21972053);Development Project of Science and Technology of Jilin Province(20170101171JC);Development Project of Science and Technology of Jilin Province(20180201068SF);Open Project of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry(202105);Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, China(2020009)

摘要:

碳催化是一类以碳材料本身为催化剂, 无需金属或金属氧化物作为活性位参与的绿色催化过程, 具有无毒无害的优势, 该路线尤其适用于食品、生物、医药等相关领域化学品的合成, 具有很大的发展潜力. 碳材料的孔隙结构和可接触活性位的数量是制备高效碳基催化剂的关键, 然而由于C-C键固有的稳定性, 碳材料表面通常呈惰性, 活性中心仅存在于sp2杂化碳表面边缘的缺陷处, 但很多碳材料中这种边缘位置相当有限. 为了获得更多的活性位, 常采用浓HNO3和H2O2对碳材料进行苛刻的氧化处理, 该方法不仅带来严重的环境问题, 同时还会破坏碳材料原有的孔隙结构, 因此需要从合成角度出发, 探索制备具有高密度活性位的碳基催化材料的新方法.

作为一种绿色可再生资源, 生物质无疑是最理想的碳前驱体, 但在高温炭化过程中, 其自身的氧元素很容易失去, 如何在构建多孔炭过程中有效保护氧物种, 并最终形成有效的含氧活性位仍然面临挑战. 本文以生物质作为碳源, 提出一种界面诱导策略构建和提升生物质基多孔炭(记作Bio-PC)本征活性位, 将铝盐(主要是硝酸铝)与生物质(如淀粉等)混合形成铝盐/淀粉界面, 高温炭化过程中形成氧化铝/炭界面, 开发制备高活性的碳催化剂. 氧化铝一方面可起到硬模板的作用, 另一方面由于铝和炭之间的界面相互作用, 部分氧基团被保护下来. 在该过程中, 氧化铝/炭界面可被视为保护含氧官能团的摇篮, 在铝物种去除后, 这些含氧官能团得以有效地暴露.

研究表明, 在没有任何氧化处理的情况下, Bio-PC上的表面氧官能团的数量可以达到1.27 mmol·g‒1, 明显高于熟知的基于传统硬模板法制备的CMK-3材料(0.24 mmol·g‒1). Bio-PC在催化胺氧化偶联合成亚胺(一类重要的药物中间体)反应中表现出优异的催化活性和选择性, 其活性是氧化石墨催化剂的22倍. 采用核磁共振和X射线光电子能谱技术等多种表征手段研究了氧化铝/炭界面在构建多孔炭过程中发挥的重要作用, 并关联了反应活性与表面活性位数量间的关系. 还可以根据本文策略在合成体系中简单引入其他组分, 如磷酸、柠檬酸等, 使所制备炭材料的孔径在微孔到介孔范围内有效调节, 获得适用于催化不同分子大小反应物的多孔炭. 综上, 本工作将为开发高性能的碳基非金属催化剂提供新的思路.

关键词: 界面相互作用, 多孔炭, 生物质, 表面功能化, 亚胺合成

Abstract:

Carbon catalysis is an attractive metal-free catalytic transformation, and its performance is significantly dependent on the number of accessible active sites. However, owing to the inherent stability of the C-C linkage, only limited active sites at the edge defects of the basal plane can be obtained even after a harsh oxidation treatment. In this study, the concept of interfacial interactions was adopted to propose an efficient strategy to develop highly active carbon catalysts. The alumina/carbon interface formed in situ acted as a cradle for the generation of oxygen-containing functional groups. In the absence of oxidation treatment, the concentration of oxygen-containing functional groups and the specific surface area can reach 1.27 mmol·g-1 and 2340 m2·g-1, respectively, which are significantly higher than those of carbon prepared by traditional hard template methods. This active carbon shows a significant enhancement in catalytic performance in the oxidative coupling of amine to imine, about 22-fold higher than that of a well-known graphite oxide catalyst. Such interfacial interaction strategies are based on sustainable carbon sources and can effectively tune the porous structure of carbon in the micro- and meso-ranges. This conceptual finding offers new opportunities for the development of high-performance carbon-based metal-free catalysts.

Key words: Interfacial interaction, Porous carbon, Biomass, Surface functionality, Imines