催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2223-2230.DOI: 10.1016/S1872-2067(21)64048-2

• 论文 • 上一篇    下一篇

Pt/SrTiO3光催化全分解水过程中水氧化活性位点的研究

张宪文a,b, 李政a, 刘太丰c, 李名润a, 曾超斌d, 松本弘昭d, 韩洪宪a,*()   

  1. a中国科学院大连化学物理研究所, 催化基础国家重点实验室, 洁净能源国家实验室(筹), 辽宁大连116023
    b中国科学院大学, 北京100049
    c河南大学纳米杂化材料应用技术国家地方联合工程研究中心, 河南开封475004
    d日立高新技术(上海)国际贸易有限公司, 上海201203
  • 收稿日期:2022-01-04 接受日期:2022-03-07 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 韩洪宪
  • 基金资助:
    国家重点研发计划(2017YFA0204800);国家自然科学基金(21761142018);国家自然科学基金(22088102)

Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting

Xianwen Zhanga,b, Zheng Lia, Taifeng Liuc, Mingrun Lia, Chaobin Zengd, Hiroaki Matsumotod, Hongxian Hana,*()   

  1. aState Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
    cNational & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China
    dHitachi High-Tech (Shanghai) Co., Ltd., Shanghai 201203, China
  • Received:2022-01-04 Accepted:2022-03-07 Online:2022-08-18 Published:2022-06-20
  • Contact: Hongxian Han
  • Supported by:
    National Key R&D Program of China(2017YFA0204800);National Natural Science Foundation of China(21761142018);National Natural Science Foundation of China(22088102)

摘要:

光催化全分解水制氢是转换太阳能的理想途径之一. 目前, 实现光催化全分解水的半导体光催化剂多为n型半导体, 并且需要担载助催化剂. 当n型半导体担载产氢助催化剂时, 由于能带弯曲, 空穴更容易迁移至半导体的表面. 因此, n型半导体的表面被认为是产氧活性位点. 光催化全分解水过程中, 水氧化半反应被认为是速率决定步骤, 因此, 深入认识水氧化活性位点意义重大. SrTiO3是一种能够高效光催化全分解水的n型半导体光催化剂, Pt是一种常见的产氢助催化剂.

本文以Pt/SrTiO3为模型体系, 对光催化全分解水过程中水氧化活性位点进行了研究. 研究表明, 光催化全分解水过程中水氧化活性位点主要位于Pt与SrTiO3的界面处. 首先, 利用光氧化沉积实验研究了水氧化活性位点. 光生空穴可以将Pb2+氧化为PbO2, 因此, 可以利用电镜观察PbO2的沉积位置, 并推测出水氧化活性位点位置. 扫描透射电镜结果表明, 更多的PbO2沉积在Pt与SrTiO3的界面处. 电子顺磁共振、热分析以及扫描透射电镜等结果表明, 真空热处理Pt/SrTiO3样品时, Pt与SrTiO3界面处的氧原子更容易失去, 同时伴随着氧空位的生成. 该界面氧空位的生成, 与Pt/SrTiO3在真空热处理前的光催化全分解水过程密切相关, 与助催化剂的担载方式无关. 只有先经历光催化全分解水反应的Pt/SrTiO3, 才更易生成界面氧空位. 利用密度泛函理论对水氧化活性位点进行了理论计算研究, 结果发现, 当水氧化反应发生在SrTiO3的表面时, 第一个质子移除步骤是速率决定步骤, 过电势为2.17 V; 当水氧化反应发生在Pt与SrTiO3的界面时, 第三步是速率决定步骤, 过电势仅为0.62 V. Pt与SrTiO3界面处发生水氧化反应的过电势, 远低于SrTiO3表面发生水氧化反应的过电势. 这表明水氧化活性位点主要位于界面处, 理论计算结果也与实验结果一致.

本文揭示了当n型半导体SrTiO3担载产氢助催化剂Pt时, 光催化全分解水过程中水氧化活性位点主要位于Pt与SrTiO3的界面处. 该结果加深了人们对产氢助催化与半导体界面的认识. 界面不仅可以调控光生载流子的分离、迁移, 也可提供光催化水氧化的活性位点. 本文结果有助于设计和构建高效的全分解水光催化剂.

关键词: 光催化全分解水, 活性位点, 氧空位, 界面, 助催化剂

Abstract:

When a proton reduction cocatalyst is loaded on an n-type semiconductor for photocatalytic overall water splitting (POWS), the location of water oxidation sites is generally considered at the surface of the semiconductor due to upward band-bending of n-type semiconductor which may ease the transfer of the photogenerated holes to the surface. However, this is not the case for Pt/SrTiO3, a model semiconductor based photocatalyst for POWS. It was found that the photogenerated holes are more readily accumulated at the interface between Pt cocatalyst and SrTiO3 photocatalyst as probed by photo-oxidative deposition of PbO2, indicating that the water oxidation sites are located at the interface between Pt and SrTiO3. Electron paramagnetic resonance and scanning transmission electron microscope studies suggest that the interfacial oxygen atoms between Pt and SrTiO3 in Pt/SrTiO3 after POWS are more readily lost to form oxygen vacancies upon vacuum heat treatment, regardless of Pt loading by photodeposition or impregnation methods, which may serve as additional support for the location of the active sites for water oxidation at the interface. Density functional theory calculations also suggest that the oxygen evolution reaction more readily occurs at the interfacial sites with the lowest overpotential. These experimental and theoretical studies reveal that the more active sites for water oxidation are located at the interface between Pt and SrTiO3, rather than on the surface of SrTiO3. Hence, the tailor design and control of the interfacial properties are extremely important for the achievement or improvement of the POWS on cocatalyst loaded semiconductor photocatalyst.

Key words: Photocatalytic overall water splitting, Active site, Oxygen vacancy, Interface, Cocatalyst