催化学报 ›› 2022, Vol. 43 ›› Issue (10): 2453-2483.DOI: 10.1016/S1872-2067(22)64104-4
• 综述 • 下一篇
沈荣晨a, 郝磊a, 吴永豪b,c,#(
), 张鹏d, Arramel Arramele,f, 李佑稷g, 李鑫a,*(
)
收稿日期:2022-01-26
接受日期:2022-02-09
出版日期:2022-10-18
发布日期:2022-09-30
通讯作者:
吴永豪,李鑫
基金资助:
Rongchen Shena, Lei Haoa, Yun Hau Ngb,c,#(
), Peng Zhangd, Arramel Arramele,f, Youji Lig, Xin Lia,*(
)
Received:2022-01-26
Accepted:2022-02-09
Online:2022-10-18
Published:2022-09-30
Contact:
Yun Hau Ng, Xin Li
About author:Yun Hau Ng is an associate professor in the School of Energy and Environment, City University of Hong Kong. He received his PhD from Osaka University in 2009. Before joining City University of Hong Kong, he was a lecturer (2014) and senior lecturer (2016) in the School of Chemical Engineering, University of New South Wales. His research is focused on the development of novel photoactive semiconductors for sunlight energy conversion. He received the 2021 Kataoka Lectureship Award for Asian and Oceanian Photochemist, the APEC ASPIRE Prize in 2019, Distinguished Lectureship Award from the Chemical Society of Japan in 2018, and Honda-Fujishima Prize by the Electrochemical Society of Japan in 2013.Supported by:摘要:
随着能源危机和环境问题的日益突出, 人们对可再生能源的开发和利用越来越关注. 其中, 通过能源转换技术, 如光催化、电催化或光(电)催化析氢反应、析氧反应、固氮反应和二氧化碳还原反应等, 将清洁、丰富的太阳能和电能转化为化学能是解决能源和环境问题的有效策略之一. 能源转换技术实现实际应用的关键在于催化剂的活性、稳定性、选择性和成本等, 然而目前催化反应大多采用生产成本高的贵金属基催化剂. 因此, 亟需开发高效、低成本的非贵金属基催化剂来替代贵金属催化剂.
单原子催化剂由于可最大限度地利用结构可控、位置明确的金属活性位点, 在多相催化中得到了广泛应用. 近年来人们发现, 通过单个金属原子与氮配位构建的氮配位单原子催化剂表现出有趣的物理、光学和电子性质, 其在光催化和电催化领域的应用研究发展迅速. 尽管已经有了大量的相关文献报道, 但目前有关氮配位单原子催化剂活性位点的内在光催化和电催化性能的调节原理和催化机理的研究尚不充分.
本文综述了近年氮配位的单原子催化剂的合成方法和检测技术, 总结了氮配位的单原子催化剂在光催化和电催化领域(如光催化或电催化水裂解、二氧化碳还原及固氮等)的应用, 结合高角度环形暗场扫描透射电子显微镜、原位红外光谱、原位X射线吸收近边结构谱、第一性原理计算结果以及催化剂在光电催化转化反应中的性能, 从单原子配位本征电子结构、活性位点及载体作用等角度, 详细讨论了氮配位单原子催化剂真实活性位及作用机制, 深度分析了氮原子配位的单原子催化的反应路径与机理, 阐明表面活性位点的微观结构特性, 进而为开发新型高效单原子光催化剂提供更多的科学依据. 最后, 总结了目前氮配位单原子光及电催化剂研究面临的机遇与挑战, 并对未来发展进行了展望. 深度理解催化剂的构效关系, 提高金属单原子活性位点含量及本征活性, 对催化剂活性中心局域原子和电子结构进行精准设计与构建, 将有助于单原子催化剂走出实验室, 进而实现实际应用.
沈荣晨, 郝磊, 吴永豪, 张鹏, Arramel Arramel, 李佑稷, 李鑫. 非均相氮配位单原子光催化剂和电催化剂[J]. 催化学报, 2022, 43(10): 2453-2483.
Rongchen Shen, Lei Hao, Yun Hau Ng, Peng Zhang, Arramel Arramel, Youji Li, Xin Li. Heterogeneous N-coordinated single-atom photocatalysts and electrocatalysts[J]. Chinese Journal of Catalysis, 2022, 43(10): 2453-2483.
Fig. 1. (a) Number of publications since 2010 on SAC-based photocatalysts involving the use of “photocatalytic*” and “single-atom catalysts*” as the two topical keywords. (b) Number of publications since 2010 on SAC-based electrocatalysts involving the use of “*electrocatalytic*” and “SMAs*” as the two topical keywords. (Adapted from ISI Web of Science Core Collection, date of search: March 15, 2022).
Fig. 6. Schematic illustration of the synthetic process for the (a) FeN4 catalyst. Reprinted with permission from Ref. [117]. Copyright 2017, American Chemical Society. (b) Co-Nx catalyst sand. Reprinted with permission from Ref. [118]. Copyright 2016, John Wiley and Sons. (c) Ru3/CN catalysts. Reprinted with permission from Ref. [119]. Copyright 2017, American Chemical Society.
Fig. 7. Schematic illustration of the synthetic procedure of SMAs@N-doped graphene (a), Fe-, N-, and B-doped FeBNC catalysts (b), and Fe-ISA/SNC (c). Reprinted with permission from Ref. [132]. Copyright 2018, American Chemical Society.
Fig. 9. (a) Synthesis process of Al‐TCPP‐Pt. Reprinted with permission from Ref. [140]. Copyright 2018, John Wiley and Sons. (b) Synthesis process of the Fe-N4 SACs/NPC. Reprinted with permission from Ref. [92]. Copyright 2018, John Wiley and Sons. (c) Synthesis process of metal-5,10,15,20-tetra(4-pyridyl)21H,23H-porp M1-TPyP. Reprinted with permission from Ref. [56]. American Chemical Society. (d) Synthesis process of Co-N5/HNPCSs with N in N-doped carbon as a coordination site. Reprinted with permission from Ref. [88]. Copyright 2018, American Chemical Society.
Fig. 10. (a) Formation of the MCM-2. Reprinted with permission from Ref. [57]. Copyright 2017, Springer Nature. (b) View of the 3D network of MOF‐525‐Co featuring a highly porous framework and incorporated active sites. Reprinted with permission from Ref. [89]. Copyright 2016, John Wiley and Sons. (c) Synthesis processes of HNTM and HNTM-M, respectively. Reprinted with permission from Ref. [58]. Copyright 2018, John Wiley and Sons.
Fig. 11. (a) HAADF-STEM image of Pt-CN. Reprinted with permission from Ref. [143]. Copyright 2016, John Wiley and Sons. (b) HR-STEM images of Ni-LixWSy and the pixel grid where EELS mapping was obtained. Reprinted with permission from Ref. [164]. Copyright 2020, American Chemical Society.
Fig. 12. (a) XANES result of the Co1-G sample. (b) k3-weighted Fourier-transform Co K-edge EXAFS result. Reprinted with permission from Ref. [90]. Copyright 2018, John Wiley and Sons. Low temperature (c) and simulated (d) STM images of FeN4/G. (e) dI/dV spectra acquired along the white line in the inset image. Reprinted with permission from Ref. [167]. Copyright 2015, Science.
Fig. 13. (a) Fourier-transform fitting result for PtSA/CN. (b) The calculated density of state for the surface of Pt-clusters/CN; time-resolved fluorescence spectra (c) and turnover frequency (d) of as-prepared samples. Reprinted with permission from Ref. [144]. Copyright 2018, American Chemical Society.
Fig. 14. (a) Structural illustration of gCN-Pt2. UV-vis absorption spectra (b) and average hydrogen-evolution rate (c) of gCN-Pt2+. (d) Photoexcited charge density transition from the Pt2+-induced hybrid HOMO states. (e) Schematic illustration of the working mechanism. Reprinted with permission from Ref. [184]. Copyright 2016, John Wiley and Sons.
Fig. 15. Synchronous illumination of high-resolution XPS spectrum of C 1s (a), N 1s (b), and Pt 4f (c) for Pt-gCN; VB XPS spectra of Pt-C3N4 (SACs) (d) and M-Pt-C3N4 (NPs) (e) under light and dark conditions. (f) Illustration of the charge transfer and bond variation in gCN. Reprinted with permission from Ref. [6]. Copyright 2020, John Wiley and Sons.
Fig. 16. (a) Structural illustration of Co1-N4. (b) Proposed photocatalytic H2 evolution mechanism. (c) Average exciton lifetime of prepared samples. Reprinted with permission from Ref. [185]. Copyright 2017, John Wiley and Sons.
Fig. 17. (a) Structural illustration of CN-0.2Ni-HO. Ni K-edge XANES profiles (b), fitting results (c)-(f) of FT-EXAFS of as-prepared samples. DOS (g) and UV-vis spectrum (h) of CN and CN-0.2Ni-HO. (i) Average hydrogen-evolution rate of as-prepared samples. Reprinted with permission from Ref. [186]. Copyright 2020, John Wiley and Sons.
Fig. 18. (a) The EXAFS fitting curve of Au-gCN. (b) CO2 temperature-programmed desorption of as-prepared samples. (c) The proposed illustration of electron distribution and the CO2 reduction process of Au-gCN under visible-light irradiation. (d) The generated CO and CH4 amount over as-prepared samples. Reprinted with permission from Ref. [199]. Copyright 2020, John Wiley and Sons.
Fig. 19. (a) The R space of LD-Er1/CN-NT, Er (yellow), N (blue), and C (green). (b) XANES spectra of the as-prepared samples. (c) Er L3-edge XANES spectra of as-prepared photocatalysts during photocatalytic CO2 reduction reaction. (d) improvement of CO and CH4 evolution over the as-prepared samples. Reprinted with permission from Ref. [159]. Copyright 2020, John Wiley and Sons.
Fig. 20. (a) XANES spectra of samples. (b) EXAFS fitting curves of samples. (c) CO2 photoreduction activities of samples. (d) Charge density difference of CO adsorbed on the N4-C and Fe-N4-C surfaces. (e) Free-energy diagram for CRR. (f) Free-energy diagram for HER. Reprinted with permission from Ref. [201]. Copyright 2020, American Chemical Society.
Fig. 21. (a) Proposed configuration of Cu-gCN. (b) In situ FTIR spectra of Cu-gCN. ESR spectrum of samples before (c) and during (d) light irradiation. Top view (e) and side view (f) of the electron density distribution. Reprinted with permission from Ref. [204]. Copyright 2018, Springer Nature.
Fig. 22. (a) Structural illustration of Pt-SACs/CTF. (b) Band diagram of as-prepared samples. (c) Schematic of the band level for Pt-SACs/CTF. (d) Free-energy profiles of the nitrogen reduction process. Reprinted with permission from Ref. [205]. Copyright 2020, American Chemical Society.
Fig. 23. (a) FT-EXAFS curves of Mo-PCN. (b) Structural model of Mo-PCN. (c) Optimized N2 adsorption model on pure PCN and Mo-PCN. (d) photocatalytic performance of samples. (e) Time-resolved fluorescence kinetics. Reprinted with permission from Ref. [206]. Copyright 2019, Royal Society of Chemistry.
Fig. 24. (a) HAADF-STEM image of the samples. Scale bar, 1 nm. (b) Tafel plots of the polarization curves. (c) Polarization curves of the samples. (d) LSV of the samples in 0.5 mol L?1 H2SO4. Reprinted with permission from Ref. [212]. Copyright 2015, Springer Nature. Licensed under Creative commons attribution 3.0 Unported License (http://creativecommons.org/licenses/by/4.0/).
Fig. 25. (a) Structural model of sample. (b) k3-weighted FTEXAFS curves of samples. (c) Co K-edge XANES spectra of samples at different potentials for HER catalysis. (d) k FT-EXAFS at different potentials. (e) ΔGH* of H adsorption on the surface of samples. (f) Electronic structure of Co1P1N3 configuration. (g) HER polarization curves of samples. (H) Overpotentials of samples. (i) Tafel plots of samples. Reprinted with permission from Ref. [214]. Copyright 2020, American Chemical Society.
Fig. 26. (a) Structural model of Cu/Ru@GN. (b) FT-EXAFS Cu K-edge signals for samples. (c) Steady-state polarization curves in 0.5 mol L?1 H2SO4. (d) Electrocatalytic OER. The corresponding FT-EXAFS spectra of Cu/Ru@GN (d) and Ru@GN (e). (f) H adsorption free energies (ΔGH*) on Ru (0001) regarding H* coverage (ML). Reprinted with permission from Ref. [215]. Copyright 2020, Elsevier.
Fig. 27. (a) Free-energy diagram of OER on Co-gCN. (b) OER polarization curves of prepared samples. (c) Electron density differences on Co-gCN. (d) D-band DOS of different transition metal-embedded gCN models. EF indicates the Fermi level. (e) Side and top views of the electron density distribution. Reprinted with permission from Ref. [95]. Copyright 2017, American Chemical Society.
Fig. 28. LSVs (a), Tafel slope (b), and ECSA-normalized activity (c) of samples in different solutions. (d) Proposed model for the samples. Reprinted with permission from Ref. [120]. Copyright 2019, American Chemical Society.
Fig. 29. (a) Formation of the MCM-2 of the samples. (b) the calculated PDOS of the samples. (c) ORR performance of as-prepared samples. Reprinted with permission from Ref. [217]. Copyright 2019, American Chemical Society.
Fig. 30. (a) Structure of the as-prepared samples. (b) OER polarization curves of the as-prepared samples. Free-energy diagram of the OER process on Co-C3N4@CS (c) and Co-O-C3N4@CS (d) surfaces. Reprinted with permission from Ref. [218]. Copyright 2020, American Chemical Society.
Fig. 31. (a) Schematic illustration of the formation of O single-atom Ni catalysts. Faradaic efficiency (b), turnover frequency (c), and Free-energy diagram (d) of CO2 reduction to CO over NiSA-Nx-C. Reprinted with permission from Ref. [233]. Copyright 2019, John Wiley and Sons.
Fig. 32. Ni K-edge XANES spectra of samples under Ar (a) and CO2 (b). Raman spectra of Ni-TAPc under Ar (c) and CO2 (d). (e) Proposed CO2 reduction pathway. Reprinted with permission from Ref. [234]. Copyright 2019, John Wiley and Sons.
|
| [1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
| [2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
| [3] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
| [4] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
| [5] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
| [6] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
| [7] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
| [8] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
| [9] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
| [10] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
| [11] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
| [12] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
| [13] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
| [14] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
| [15] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||