催化学报 ›› 2023, Vol. 44: 50-66.DOI: 10.1016/S1872-2067(22)64148-2
李雅a,1, 王震康c,1, 季浩卿c,1, 张莉芳b, 钱涛b,c, 晏成林c,d,*(), 路建美a,*(
)
收稿日期:
2022-05-23
接受日期:
2022-07-04
出版日期:
2023-01-18
发布日期:
2022-12-08
通讯作者:
晏成林,路建美
作者简介:
1共同第一作者.
基金资助:
Ya Lia,1, Zhenkang Wangc,1, Haoqing Jic,1, Lifang Zhangb, Tao Qianb,c, Chenglin Yanc,d,*(), Jianmei Lua,*(
)
Received:
2022-05-23
Accepted:
2022-07-04
Online:
2023-01-18
Published:
2022-12-08
Contact:
Chenglin Yan, Jianmei Lu
About author:
Chenglin Yan (College of Energy at Soochow University) is a Professor and Dean of the College of Energy at Soochow University in Suzhou, China. He received his Ph.D. from Dalian University of Technology in 2008. In 2011, he became a staff scientist and a group leader at the Institute for Integrative Nanoscience at the Leibniz Institute in Dresden (Germany). His primary research interests focus on electrochemical energy storage.Supported by:
摘要:
氨(NH3)广泛应用于化肥等工业化学品的生产中, 年消耗量巨大. 同时, 氨具有高氢含量和高能量密度, 可作为清洁能源载体和燃料, 具有广阔的应用前景. 因此, 合成氨工业在国民经济和社会发展中起着重要作用. 目前, 合成氨的主要采用传统的Haber-Bosch工艺, 但其严苛的操作条件导致了大量能源消耗和二氧化碳排放, 进一步加剧了全球变暖. 在全球能源危机和环境问题的背景下, 开发可再生能源驱动的绿色高效氨合成技术受到广泛关注. 其中, 以光催化和电催化为动力的氮还原反应(NRR)被认为是最有前途的方法之一.
然而, 由于N2吸附动力学缓慢, N≡N键分裂困难且析氢反应严重, 目前电催化和光催化氮还原的产率和法拉第效率都较低. 近年来, 得益于各种催化剂和电解液的发展, NRR产率和法拉第效率不断提升, 但也逐渐暴露出一些严重的问题——测试结果呈现高波动性和低重复性, 甚至假阳性, 这使得人们对NRR的发展前景产生了怀疑. 由于NRR反应的产量极低(通常为纳/微摩尔水平), 所以反应过程中的微量污染都可能严重影响NH3的定量结果, 从而导致对NRR反应体系性能的误判. 因此, 如何保证得到的产物NH3完全来自于氮气的还原是一个难题.
本文基于NRR反应整个检测流程中的污染源和不确定性, 包括来自反应物和实验装置中的杂质, 各种定量方法的固有缺陷, 甚至一些细微的定量仪器误差等, 将影响氨定量的潜在因素细分为催化剂污染、实验过程中引入的污染以及量化方法的固有缺陷等, 详细讨论了这些潜在因素如何干扰氨的最终定量结果, 并总结了已报道的相应消除干扰策略. 此外, 结合本课题组在NRR领域的研究经验, 提出了一套严格的NRR检测办法, 该办法针对NRR检测的三个阶段: 检测前、检测中和定量过程, 提出了相应建议. 最后, 对该领域的未来发展进行了展望, 提出一些关键问题和发展方向, 希望能为促进NRR研究发展提供一些借鉴.
李雅, 王震康, 季浩卿, 张莉芳, 钱涛, 晏成林, 路建美. 氮还原反应中氨定量假阳性结果的来源与消除方法[J]. 催化学报, 2023, 44: 50-66.
Ya Li, Zhenkang Wang, Haoqing Ji, Lifang Zhang, Tao Qian, Chenglin Yan, Jianmei Lu. Excluding false positives: A perspective toward credible ammonia quantification in nitrogen reduction reaction[J]. Chinese Journal of Catalysis, 2023, 44: 50-66.
Fig. 1. Schematic illustrations of electrocatalytic (a) and photocatalytic (b) NRR. (c) The remarkable faradic efficiency and NH3 yield in the NRR field from 2018 to 2022. Data are adapted from representative papers in the four years, Ref. [19???????-27]. (d) Schematic illustration of potential factors causing final wrong ammonia quantification from a complete NRR test process. The influencing factors include pollution introduced into NRR reaction systems from different sources, as well as errors in the quantification methods.
Metal oxides/Fe sample Sample | Vendor | Item number | Lot number | Total N (ppm) | Labelled assay | |
---|---|---|---|---|---|---|
Metal oxides | Bi2O3 | Alfa Aesar | 45582 | M22F015 | 1610 ± 48 | +99.5% |
CeO2 | Alfa Aesar | 46763 | R22A020 | 1414 ± 21 | 25% in H2O | |
Al2O3 | Alfa Aesar | 44931 | X24E065 | 690 ± 4 | 99.5% | |
Fe2O3 | Sigma-Aldrich | 544884 | MKCH7591 | 576 ± 20 | 70.0% (Fe basis) | |
Fe2O3 | Alfa Aesar | 45007 | W04E043 | 563 ± 21 | ≥98% | |
Fe2O3 | Alfa Aesar | 44895 | Y22D002 | 554 ± 24 | ≥98.0% | |
Fe2O3 | Alfa Aesar | 44896 | Y01C003 | 508 ± 24 | ≥98% | |
ZnO | Alfa Aesar | 45849 | S05D048 | 188 ± 1 | N/A | |
Fe2O3 | JTBaker | 2024-01 | 0000235234 | — | ≥98.0% | |
α-Fe2O3 | USNano | US3180 | N/A | — | +98% | |
γ-Fe2O3 | USNano | US3210 | N/A | — | 99% | |
Fe3O4 | USNano | US3220 | N/A | — | +98% | |
Fe3O4 | Sigma-Aldrich | 637106 | MKCH8514 | — | 97% | |
Metallic irons | # Fe, 1-3 micron | Alfa Aesar | 40337 | R31E034 | 7183 7372 7337 | +98% |
Fe | Sigma-Aldrich | 255637 | MKBL4538V | 391 | ≥99.99% | |
Fe, ~100 mesh | Alfa Aesar | 43240 | Q12C003 | 363 | 99.9% | |
Fe, 6-10 micro | Alfa Aesar | 10214 | G19X048 | 332 | 99.5% | |
Fe, ~200 mesh | Alfa Aesar | 00737 | M11E029 | 295 | 99+% |
Table 1 Summary of total-N amounts detected in commercial metal oxides and Fe samples. Total N in commercial metal oxides and metallic irons is based on NOx- contents by the HPLC analysis and the NH4+ contents after dissolving the samples in 0.1 mol L-1 H2SO4, respectively. Reprinted with permission from Ref. [36]. Copyright 2020, Springer Nature.
Metal oxides/Fe sample Sample | Vendor | Item number | Lot number | Total N (ppm) | Labelled assay | |
---|---|---|---|---|---|---|
Metal oxides | Bi2O3 | Alfa Aesar | 45582 | M22F015 | 1610 ± 48 | +99.5% |
CeO2 | Alfa Aesar | 46763 | R22A020 | 1414 ± 21 | 25% in H2O | |
Al2O3 | Alfa Aesar | 44931 | X24E065 | 690 ± 4 | 99.5% | |
Fe2O3 | Sigma-Aldrich | 544884 | MKCH7591 | 576 ± 20 | 70.0% (Fe basis) | |
Fe2O3 | Alfa Aesar | 45007 | W04E043 | 563 ± 21 | ≥98% | |
Fe2O3 | Alfa Aesar | 44895 | Y22D002 | 554 ± 24 | ≥98.0% | |
Fe2O3 | Alfa Aesar | 44896 | Y01C003 | 508 ± 24 | ≥98% | |
ZnO | Alfa Aesar | 45849 | S05D048 | 188 ± 1 | N/A | |
Fe2O3 | JTBaker | 2024-01 | 0000235234 | — | ≥98.0% | |
α-Fe2O3 | USNano | US3180 | N/A | — | +98% | |
γ-Fe2O3 | USNano | US3210 | N/A | — | 99% | |
Fe3O4 | USNano | US3220 | N/A | — | +98% | |
Fe3O4 | Sigma-Aldrich | 637106 | MKCH8514 | — | 97% | |
Metallic irons | # Fe, 1-3 micron | Alfa Aesar | 40337 | R31E034 | 7183 7372 7337 | +98% |
Fe | Sigma-Aldrich | 255637 | MKBL4538V | 391 | ≥99.99% | |
Fe, ~100 mesh | Alfa Aesar | 43240 | Q12C003 | 363 | 99.9% | |
Fe, 6-10 micro | Alfa Aesar | 10214 | G19X048 | 332 | 99.5% | |
Fe, ~200 mesh | Alfa Aesar | 00737 | M11E029 | 295 | 99+% |
Fig. 2. Electrocatalytic NRR tests of Pd NSs and a pre-reduction strategy to remove residual or adsorbed NOx contaminants in catalysts. Reprinted with permission from Ref. [37]. Copyright 2020, Elsevier.
Fig. 3. (a) High-resolution N 1s XPS spectrum of the NPC@500, and its elemental composition by XPS technique after the NRR for 2 h in N2-saturated 0.005 mol L?1 H2SO4 electrolyte at ?0.4 V (vs. RHE). Reprinted with permission from Ref. [42]. Copyright 2019, American Chemical Society. (b) High-resolution N 1s XPS spectra of Co(Mo)-Nx/NPC@500, their LSV curves in the Ar- and N2-saturated 0.1 mol L?1 Na2SO4 electrolyte and continuous pick point experiments of at ?0.4 V (vs. RHE) in the Ar-saturated 0.1 mol L?1 Na2SO4 electrolyte. Reprinted with permission from Ref. [45]. Copyright 2021, Royal Society of Chemistry.
Chemical | Brand | Product code | Assay (%) | Labeled NO3- content a | [NO3-] in 0.5 mol L‒1 solution b (μg mL-1) |
---|---|---|---|---|---|
Li2SO4·H2O | Sigma-Aldrich | 398152 | ≥99.0 | ≤0.001% | — |
Li2SO4·H2O | Sigma-Aldrich | 62612 | ≥99.0 | ≤10 mg kg-1 | — |
Li2SO4·H2O | Sigma-Aldrich | 62609 | ≥99.0 | ≤10 mg kg-1 | — |
Li2SO4 | Sigma-Aldrich | 203653 | ≥99.99 | n.a. | not detected |
Li2SO4 | Sigma-Aldrich | L6375 | ≥98.5 | n.a. | 11.19 |
Li2SO4 | Sigma-Aldrich | 62613 | ≥98.0 | n.a. | 1.02 |
Li2SO4 | Alfa Aesar | 13404 | ≥99.7 | n.a. | 2.82 |
Li2SO4 | Aladdin | L130839 | ≥98.5 | n.a. | not detected |
LiClO4 | Sigma-Aldrich | 431567 | ≥99.99 | n.a. | 1.39 |
LiClO4 | Sigma-Aldrich | 205281 | ≥95.0 | n.a. | 2.38 |
Li2CO3 | Sigma-Aldrich | 431559 | ≥99.99 | ≤5 mg kg‒1 | — |
Li2CO3 | Sigma-Aldrich | 62470 | ≥99.0 | ≤5 mg kg‒1 | — |
Table 2 Labeled NO3- content in various commercial lithium salts and detected NO3- concentration in their 0.5 mol L?1 solution. Reprinted with permission from Ref. [53]. Copyright 2019, American Chemical Society.
Chemical | Brand | Product code | Assay (%) | Labeled NO3- content a | [NO3-] in 0.5 mol L‒1 solution b (μg mL-1) |
---|---|---|---|---|---|
Li2SO4·H2O | Sigma-Aldrich | 398152 | ≥99.0 | ≤0.001% | — |
Li2SO4·H2O | Sigma-Aldrich | 62612 | ≥99.0 | ≤10 mg kg-1 | — |
Li2SO4·H2O | Sigma-Aldrich | 62609 | ≥99.0 | ≤10 mg kg-1 | — |
Li2SO4 | Sigma-Aldrich | 203653 | ≥99.99 | n.a. | not detected |
Li2SO4 | Sigma-Aldrich | L6375 | ≥98.5 | n.a. | 11.19 |
Li2SO4 | Sigma-Aldrich | 62613 | ≥98.0 | n.a. | 1.02 |
Li2SO4 | Alfa Aesar | 13404 | ≥99.7 | n.a. | 2.82 |
Li2SO4 | Aladdin | L130839 | ≥98.5 | n.a. | not detected |
LiClO4 | Sigma-Aldrich | 431567 | ≥99.99 | n.a. | 1.39 |
LiClO4 | Sigma-Aldrich | 205281 | ≥95.0 | n.a. | 2.38 |
Li2CO3 | Sigma-Aldrich | 431559 | ≥99.99 | ≤5 mg kg‒1 | — |
Li2CO3 | Sigma-Aldrich | 62470 | ≥99.0 | ≤5 mg kg‒1 | — |
Fig. 4. (a) Evolution of the total amounts of N-containing ions (left-hand side axis) accumulated in the 0.35 mol L?1 [nBu4N][PF6] (CH3CN) electrolyte solution and 1 mmol L?1 H2SO4 acid trap solution, as well as of the H2O concentration (right-hand side axis) in the electrolyte solution during tests of the iron-modified stainless steel electrodes under Ar and then 14N2 atmosphere. Reprinted with permission from Ref. [65]. Copyright 2021, John Wiley and Sons. (b) Ammonia pollution of various membranes. (Left) ammonia release from new Nafion 115 membrane (black line) and the Nafion 115 membranes reused for many times (red line) without sample and applied potential; Absorption (Middle) and release (Right) of ammonia by Nafion 211 (N211), Nafion 115 (N115), Nafion 117 (N117), Celgard 2400 (C2400) and Celgard 3501 (C3501) membranes. Reprinted with permission from Ref. [37]. (c) Detected ammonia concentrations of experimental consumables. 100 mg of samples were immersed in 20 mL of 0.1 mol L?1 Na2SO4, and stirred for 6 h at 1000 rpm. Reprinted with permission from Ref. [50]. Copyright 2020, Elsevier.
Flow rate (mL min‒1) | N2 purity | Purging time (min) | Moles N2 (nmol) | Moles NOx a (nmol) | NH3 from NOx (nmol s‒1) |
---|---|---|---|---|---|
100 | 99.999% (10 ppm NOx) b | 240 | 9.82 × 108 | 9.82 × 103 | 0.68 |
99.99% (100 ppm NOx) | 9.82 × 104 | 6.8 | |||
99.9% (1000 ppm NOx) | 9.82 × 105 | 68 | |||
20 | 99.999% (10 ppm NOx) | 240 | 1.96 × 108 | 1.96 × 103 | 0.14 |
99.99% (100 ppm NOx) | 1.96 × 104 | 1.4 | |||
99.9% (1000 ppm NOx) | 1.96 × 105 | 14 | |||
0 | 99.999% (10 ppm NOx) | 15 (prior to experiment at 20 mL min‒1) | 1.23 × 107 | 1.23 × 102 | 0.009 |
99.99% (100 ppm NOx) | 1.23 × 103 | 0.09 | |||
99.9% (1000 ppm NOx) | 1.23 × 104 | 0.9 |
Table 3 Amount of N2 and potential NOx contaminants supplied in 4-h NRR experiments undertaken at different N2 purity and gas supply rates, as well as simple calculations of the maximal possible ammonia formation yield rates through the reduction of NOx (assuming all contaminants are NOx and are selectively reduced to NH3). Reprinted with permission from Ref. [3]. Copyright 2020, Springer Nature.
Flow rate (mL min‒1) | N2 purity | Purging time (min) | Moles N2 (nmol) | Moles NOx a (nmol) | NH3 from NOx (nmol s‒1) |
---|---|---|---|---|---|
100 | 99.999% (10 ppm NOx) b | 240 | 9.82 × 108 | 9.82 × 103 | 0.68 |
99.99% (100 ppm NOx) | 9.82 × 104 | 6.8 | |||
99.9% (1000 ppm NOx) | 9.82 × 105 | 68 | |||
20 | 99.999% (10 ppm NOx) | 240 | 1.96 × 108 | 1.96 × 103 | 0.14 |
99.99% (100 ppm NOx) | 1.96 × 104 | 1.4 | |||
99.9% (1000 ppm NOx) | 1.96 × 105 | 14 | |||
0 | 99.999% (10 ppm NOx) | 15 (prior to experiment at 20 mL min‒1) | 1.23 × 107 | 1.23 × 102 | 0.009 |
99.99% (100 ppm NOx) | 1.23 × 103 | 0.09 | |||
99.9% (1000 ppm NOx) | 1.23 × 104 | 0.9 |
Fig. 5. (a) Comparison of Nessler's reagent method and Indophenol blue method. Their reaction mechanisms, UV-Vis spectra and experimental phenomena are all listed in the form of table. (b) Standard curves for NH3 quantitation (lower than 0.2 × 10-6 g mL-1) using NR (up) and IB (down) methods under acid, neutral and alkaline electrolyte systems. Reprinted with permission from Ref. [83]. Copyright 2021, John Wiley and Sons. (c) 1H NMR spectra of concentrated ammonium chloride standard solutions were prepared in different deuterated solvents (DMSO-d6: red; acetone-d6: blue; water-d2: green), and analyzed after 24 h to emphasize deuterium exchange. Reprinted with permission from Ref. [90]. Copyright 2020, American Chemical Society. (d) 1H NMR spectra of 14NH4+-14N and 15NH4+-15N. Reprinted with permission from Ref. [102], Copyright 2020, National Academy of Sciences.
Ammonia quantification method | IB | NR | IC | NMR | |||
---|---|---|---|---|---|---|---|
Concentration | Method | pH | |||||
< 0.2 × 10-6 g mL-1 | Electrocatalysis | Acid | ☺ | — | ☺ | ☺ | |
Neutral | ☺ | ☺ | — | ☺ | |||
Alkaline | ☺ | — | — | — | |||
Photocatalysis | — | — | ☺ | ☺ | |||
≥ 0.2 × 10-6 g mL-1 | — | — | Routine quantification |
Table 4 Various detection and quantification methods for NH4+ based on different applicable conditions. Reprinted with permission from Ref. [83]. Copyright 2021, John Wiley and Sons.
Ammonia quantification method | IB | NR | IC | NMR | |||
---|---|---|---|---|---|---|---|
Concentration | Method | pH | |||||
< 0.2 × 10-6 g mL-1 | Electrocatalysis | Acid | ☺ | — | ☺ | ☺ | |
Neutral | ☺ | ☺ | — | ☺ | |||
Alkaline | ☺ | — | — | — | |||
Photocatalysis | — | — | ☺ | ☺ | |||
≥ 0.2 × 10-6 g mL-1 | — | — | Routine quantification |
|
[1] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[2] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[3] | 郑子叶, 田爽, 冯玉晓, 赵珊, 李鑫, 王曙光, 何作利. 光催化耦合技术在废水处理中的最新进展[J]. 催化学报, 2023, 54(11): 88-136. |
[4] | 钱秀, 魏艳娇, 孙梦洁, 韩野, 张晓俐, 田健, 邵敏华. 在Ti3C2Tx MXene上原位生长2D TiO2纳米片的异质结构用于改善电催化氮气还原[J]. 催化学报, 2022, 43(7): 1937-1944. |
[5] | 茆卉, 杨浩然, 柳金池, 张帅, 刘大亮, 吴琼, 孙文平, 宋溪明, 马天翼. 基于聚(两性离子液体)功能化聚吡咯/氧化石墨烯的独特MoS2-SnS2异质纳米片及其改善的氮还原电活性[J]. 催化学报, 2022, 43(5): 1341-1350. |
[6] | 熊伟, 周敏, 李昊, 丁朝, 张达, 吕耀康. 介孔氧化镍纳米片负载Pt纳米粒子电催化合成氨[J]. 催化学报, 2022, 43(5): 1371-1378. |
[7] | 杨绍康, 张超楠, 饶德伟, 颜晓红. 多Nb原子掺杂氮化碳与H离子协同作用促进氮高效还原[J]. 催化学报, 2022, 43(4): 1139-1147. |
[8] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
[9] | 张龙, 杨懿, 李远志, 武继春, 吴绍文, 谭鑫, 胡倩倩. 二氧化铈-铈掺杂锰氧化物纳米复合物高效紫外-可见-红外光热催化净化乙酸乙酯[J]. 催化学报, 2022, 43(2): 379-390. |
[10] | 王慧杰, 李鑫, 赵小雪, 李春岩, 宋相海, 张鹏, 霍鹏伟, 李鑫. 可用于环境修复的半导体光催化剂及其改性策略研究进展[J]. 催化学报, 2022, 43(2): 178-214. |
[11] | 杨柳晶, 程传祺, 张训, 唐城, 杜坤, 杨园园, 沈善成, 许实龙, 尹鹏飞, 梁海伟, 凌涛. 双位点协同促进Ru-S-C单原子催化剂上电化学氮还原[J]. 催化学报, 2022, 43(12): 3177-3186. |
[12] | Kai S. Exner. 突破过渡金属氧化物氮还原反应的热力学火山图: 对材料筛选的影响[J]. 催化学报, 2022, 43(11): 2871-2880. |
[13] | 蒋子艺, 胡友成, 黄俊, 陈胜利. 电化学氮还原反应热力学火山关系的组合描述符[J]. 催化学报, 2022, 43(11): 2881-2888. |
[14] | 曾辉炎, 曾衍铨, 漆俊, 顾龙, 洪恩纳, 司锐, 杨纯臻. 析氧反应中催化剂-电解质界面的质子动力学研究[J]. 催化学报, 2022, 43(1): 139-147. |
[15] | 黄斌, 吴亦凡, 陈碧波, 钱勇, 周耐根, 李能. 过渡金属原子对掺杂g-CN单层作为高效氮电催化剂性能[J]. 催化学报, 2021, 42(7): 1160-1167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||