催化学报 ›› 2023, Vol. 44: 67-95.DOI: 10.1016/S1872-2067(22)64152-4
杨金曼a, 杨铮睿a, 杨科芬a, 于卿a, 朱兴旺b, 许晖a,*(), 李华明a,*(
)
收稿日期:
2022-04-08
接受日期:
2022-07-15
出版日期:
2023-01-18
发布日期:
2022-12-08
通讯作者:
许晖,李华明
基金资助:
Jinman Yanga, Zhengrui Yanga, Kefen Yanga, Qing Yua, Xingwang Zhub, Hui Xua,*(), Huaming Lia,*(
)
Received:
2022-04-08
Accepted:
2022-07-15
Online:
2023-01-18
Published:
2022-12-08
Contact:
Hui Xu, Huaming Li
About author:
Hui Xu is a professor at the Institute for Energy Research at Jiangsu University. He received a Ph.D. degree from Jiangsu University, China in 2010. He was selected for the National Youth Talent Project. His research interests are in the development of nanomaterials and their composites for hydrogen evolution and energy conversion. His research work is mainly focused on photocatalytic and electrocatalytic hydrogen evolution reactions (HER) and CO2 reduction using various nanostructures. Currently, he serves as a member of the Energy and Environment Committee of the Chinese Energy Society. More than 200 research papers have been published in international journals including ACS Nano, Adv. Energy Mater., Angew. Chem. Int. Ed., etc., with more than 19000 citations (H-Index = 74). In 2019, he was awarded the Jiangsu Outstanding Youth Fund, and he was selected as a Clarivate Analytics Global Highly Cited Scientist from 2019 to 2021. In 2021, he was selected as an Elsevier Highly Cited Scholar. In 2020, he won the Hou Debang Chemical Science and Technology Youth Award. In 2021, he won the second prize in the China Petroleum and Chemical Industry Federation Science and Technology Progress Award.Supported by:
摘要:
化石能源的过度使用造成CO2大量排放, 导致了环境问题, 同时引发了能源危机. 新能源技术的快速发展为缓解上述问题提供了有效途径. 光催化CO2转化技术因绿色环保、成本低廉、反应条件温和、操作安全可控而引起了研究者们的广泛关注. 推动光催化CO2转化技术发展的关键在于高效光催化剂的精准设计与合成. 目前, 已经发展了多种光催化剂.
铟基三元金属硫化物因具有合适的能带结构、较宽的吸光范围和独特的双金属位点而成为光催化CO2还原领域的研究热点之一. 独特的双金属结构使其具有更丰富的活性位点, 同时可以调控对关键中间体的吸附和解吸, 进而提高CO2反应活性, 并精准调控目标产物的选择性. 然而, 缓慢的电子传输行为和高载流子复合效率阻碍了CO2还原反应效率的提升, 因此, 目前距离实现光催化CO2还原技术的工业化应用仍有较大的差距. 为了克服上述难题, 科学家们对铟基三元金属硫化物进行了大量研究, 以期通过修饰改性进一步提高催化效率和选择性. 然而, 目前有关铟基三元金属硫化物在光催化CO2还原领域应用研究进展的归纳和总结尚不充分, 基于此类材料独特的性质, 对其进行全面的总结分析是十分必要的.
本文首先对光催化CO2还原反应的基本原理进行了分析, 探讨了影响其活性和选择性提升的关键要素. 然后, 对几种典型的铟基三元金属硫化物的结构、组成特性以及合成方法进行了详细归纳. 重点围绕铟基三元金属硫化物的性能提升策略, 如形貌与结构调控、缺陷工程以及复合材料的构建等, 总结了其在光催化CO2还原领域的最新研究进展, 深入剖析了催化剂的设计策略与催化活性增强之间的构效关系, 以及密度泛函理论计算和原位表征技术在该领域的应用. 最后, 总结了目前铟基三元金属硫化物研究所面临的挑战, 并对未来发展方向进行了展望.
杨金曼, 杨铮睿, 杨科芬, 于卿, 朱兴旺, 许晖, 李华明. 铟基三元金属硫化物催化剂在光催化二氧化碳还原领域中的研究进展[J]. 催化学报, 2023, 44: 67-95.
Jinman Yang, Zhengrui Yang, Kefen Yang, Qing Yu, Xingwang Zhu, Hui Xu, Huaming Li. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application[J]. Chinese Journal of Catalysis, 2023, 44: 67-95.
Product | Reaction | ∆Hθ (kJ mol‒1) | ∆Gθ (kJ mol‒1) |
---|---|---|---|
CO | 2CO2 → 2CO + O2 | 283 | 257 |
HCOOH | 2CO2 + 2H2O → 2HCOOH + O2 | 270 | 286 |
HCHO | CO2 + H2O → HCHO + O2 | 563 | 522 |
CH3OH | 2CO2 + 4H2O → 2CH3OH + 3O2 | 727 | 703 |
CH4 | CO2 + 2H2O → CH4 + 2O2 | 890 | 818 |
Table 1 Thermodynamics for the products of CO2 photoreduction reactions.
Product | Reaction | ∆Hθ (kJ mol‒1) | ∆Gθ (kJ mol‒1) |
---|---|---|---|
CO | 2CO2 → 2CO + O2 | 283 | 257 |
HCOOH | 2CO2 + 2H2O → 2HCOOH + O2 | 270 | 286 |
HCHO | CO2 + H2O → HCHO + O2 | 563 | 522 |
CH3OH | 2CO2 + 4H2O → 2CH3OH + 3O2 | 727 | 703 |
CH4 | CO2 + 2H2O → CH4 + 2O2 | 890 | 818 |
Photocatalyst | T (°C) | P | Solution | Light source | Photosensitizer | Yield (μmol g−1) | Ref. |
---|---|---|---|---|---|---|---|
5 mg CdS@COF | 25 | 1.0 atm | 4 mL MeCN, 1 mL H2O, BIH (20 mg) | 300 W Xe lamp (λ ≥ 420 nm) | — | CO: 4057 (8 h) | [ |
0.2 mg ZnCo-OH QUNH | — | 1.0 atm | 12 mL MeCN, 3 mL H2O, 5 mL TEOA | 300 W Xe lamp (λ > 420 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 134.2 (1 h) | [ |
30 mg Pd-HPP-TiO2 | — | 1.0 atm | 2 mL H2O (bottom, gas-solid) | 300 W Xe lamp (λ > 420 nm) | — | CH4: 48; CO: 34 (1 h) | [ |
30 mg Pt@Def-CN | — | 1.0 bar | 100 µL H2O (bottom, gas-solid) | 300 W Xe lamp | — | CH4: 6.3 (1 h) | [ |
25 mg ultrathin Pb0.6Bi1.4Cs0.6O2C2 layers | — | — | 50 μL H2O | 300 W Xe lamp | — | MeOH: 26.53; CO: 17.91 (4 h) | [ |
1 mg W18O49@Co | 30 | 1.0 atm | 3 mL MeCN, 2 mL H2O, 1 mL TEOA | 300 W Xe lamp (λ ≥ 400 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 21180 (1 h) | [ |
30 mg In2O3/In2S3 | 10 | 80 kPa | 50 mL H2O | 300 W Xe lamp | — | CO: 12.22 (1 h) | [ |
Table 2 Evaluation of photocatalytic CO2 reduction performance of some catalytic systems under different test conditions.
Photocatalyst | T (°C) | P | Solution | Light source | Photosensitizer | Yield (μmol g−1) | Ref. |
---|---|---|---|---|---|---|---|
5 mg CdS@COF | 25 | 1.0 atm | 4 mL MeCN, 1 mL H2O, BIH (20 mg) | 300 W Xe lamp (λ ≥ 420 nm) | — | CO: 4057 (8 h) | [ |
0.2 mg ZnCo-OH QUNH | — | 1.0 atm | 12 mL MeCN, 3 mL H2O, 5 mL TEOA | 300 W Xe lamp (λ > 420 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 134.2 (1 h) | [ |
30 mg Pd-HPP-TiO2 | — | 1.0 atm | 2 mL H2O (bottom, gas-solid) | 300 W Xe lamp (λ > 420 nm) | — | CH4: 48; CO: 34 (1 h) | [ |
30 mg Pt@Def-CN | — | 1.0 bar | 100 µL H2O (bottom, gas-solid) | 300 W Xe lamp | — | CH4: 6.3 (1 h) | [ |
25 mg ultrathin Pb0.6Bi1.4Cs0.6O2C2 layers | — | — | 50 μL H2O | 300 W Xe lamp | — | MeOH: 26.53; CO: 17.91 (4 h) | [ |
1 mg W18O49@Co | 30 | 1.0 atm | 3 mL MeCN, 2 mL H2O, 1 mL TEOA | 300 W Xe lamp (λ ≥ 400 nm) | [Ru(bpy)3]Cl2·6H2O | CO: 21180 (1 h) | [ |
30 mg In2O3/In2S3 | 10 | 80 kPa | 50 mL H2O | 300 W Xe lamp | — | CO: 12.22 (1 h) | [ |
Fig. 5. Crystal structure of hexagonal (a), cubic (b) and rhombohedral (c) ZnIn2S4. Reprinted with permission from Ref. [96]. Copyright 2011, Elsevier.
Fig. 6. Schematic illustration of the synthetic process (a) and CO2 reduction mechanism (b) for the QD-Re hybrid system. Reprinted with permission from Ref. [114]. Copyright 2018, the Royal Society of Chemistry. (c) The mechanism of photocatalytic reduction of CO2 on CuInS2 colloidal QDs photosensitizes Co-porphyrin catalyst. Reprinted with permission from Ref. [115]. Copyright 2021, American Chemical Society. (d) The mechanism of photocatalytic reduction of CO2 on ZnIn2S4 nanorods. Reprinted with permission from Ref. [120]. Copyright 2022, Elsevier.
Fig. 7. (a,b) HAADF-STEM images of VZn-rich one-unit-cell ZnIn2S4. (c) Intensity profile corresponding to the dark cyan arrow in (b). (d) EPR spectra of VZn-rich one-unit-cell ZnIn2S4 and VZn-poor one-unit-cell ZnIn2S4. (e) Schematic diagram of photocatalytic CO2 reduction reaction process on the surface of VZn-rich one-unit-cell ZIS layers. ultrafast TA spectroscopy of VZn-poor one-unit-cell ZnIn2S4 (f) and VZn-rich one-unit-cell ZnIn2S4 (g). Reprinted with permission from Ref. [122]. Copyright 2017, American Chemical Society.
Fig. 8. (a) Schematic illustration of the VS-CdIn2S4 photocatalyst fabricated process. S 2p in XPS (b) and EPR spectra (c) of CdIn2S4 and VS-CdIn2S4. (d) Schematic diagram of photocatalytic CO2 reduction reaction process on the VS-CdIn2S4 photocatalyst. Reprinted with permission from Ref. [123]. Copyright 2020, Elsevier. (e) The dual-metal-site catalytic systems of VS-CuIn5S8 for CO2 photoreduction into CH4. (f) Photocatalytic CO2 reduction activity comparison. (g) Performance durability testing of VS-CuIn5S8 single-unit-cell layers. Reprinted with permission from Ref. [36]. Copyright 2019, Nature.
Fig. 9. (a) Proposed mechanism for photocatalytic CO2 reduction over phosphorus-doped ZnIn2S4 (P-ZIS). Reprinted with permission from Ref. [128] Copyright 2021, American Chemical Society. (b) Proposed mechanism for photocatalytic CO2 reduction over oxygen-doped ZnIn2S4 (O-ZIS) under visible light. Reprinted with permission from Ref. [129]. Copyright 2021, Elsevier.
Photocatalyst | Light source | Experimental condition | Yield (μmol·g-1·h-1) | Ref. |
---|---|---|---|---|
20 mg D-Y-TiO2@ZnIn2S4 | 0.240 W cm−2 LED light (λ = 420 nm) | 10 mL MeCN, 0.1 mol L−1 TEOA, 1/80 mol L−1 BIH | CO: 40.66; H2: 28.40 | [ |
10 mg Co3O4@CdIn2S4 | 300 W Xe lamp (λ > 400 nm) | 400 μmol 2,2-bipyridine, 8 μmol CoCl2, 4 mL TEOA, 4 mL H2O, 16 mL MeCN | CO: 5300 | [ |
10 mg WQDs/CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 10 mL H2O | CO: 8.2; CH4: 1.6 | [ |
0.1 g ZnIn2S4/BiVO4 | 300 W Xe lamp | water vapor | CO: 4.75; CH4: 0.5 | [ |
meso-TiO2@ZnIn2S4/Ti3C2 MXene | 300 W Xe lamp | 0.5 mL H2O | CO: 10.17; CH4: 11.33 | [ |
0.1 g PCMT@In2O3/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 101.62 | [ |
25 mg TiO2@ZnIn2S4 | 300 W Xe lamp | 10 mL H2O | CO: 9.28; CH4: 4.26; CH3OH: 4.78 | [ |
50 mg KCa2Nb3O10/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 4.69 | [ |
10 mg CdIn2S4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 25 mL reaction solution (140 mL of KHCO3 (0.5 mol L−1), 1.0000 g 2,2-bipyridine, 0.1540 g CoCl2⋅6H2O, 0.1 L TEOA, 0.2 L MeCN) | CO: 1194.5; H2: 475.7 | [ |
4 mg In2S3-CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg bipyridine, 2 μmol CoCl2, 1 mL TEOA, 2 mL H2O, 3 mL MeCN | CO: 825 | [ |
10 mg ZnS/ZnIn2S4 | 300 W halogen lamp | 100 ml 0.5 wt% Pt (H2PtCl6) 10 vol% CH3OH | CH3CHO: 61.27; CH3OH: 0.228 | [ |
2 mg g-C3N4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg of 2,2-bipyridine, 2 μmol CoCl2, 1 mL TEOA, 3 mL MeCN, 2 mL H2O, | CO: 7368.7 | [ |
10 mg g-C3N4/Au/ZnIn2S4 | 300 W Xe lamp | 15 mg 2,2-bipyridine, 2 μmol CoCl2, 2 mL TEOA, 6 mL MeCN, 4 mL H2O | CO: 242.3 | [ |
50 mg PCN/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 892 | [ |
50 mg ZnIn2S4@CNO | 300 W Xe lamp (λ > 400 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 253.8; CH4: 23.6 | [ |
50 mg CuInS2/Au/g-C3N4 | 300 W Xe lamp (λ > 400 nm) | water vapor | CO: 2.43; CH4: 0.15 | [ |
0.1 g ZnIn2S4/N-doped graphene | 300 W Xe lamp | 10 mL H2O | CO: 2.45; CH4: 1.01; CH3OH: 1.37 | [ |
0.1 g CdIn2S4/mpg-C3N4 | 300 W Xe lamp (λ > 420 nm) | 100 mL aqueous solution, 0.1 mol L−1 NaOH | CH3OH: 42.7 | [ |
50 mg NH2-UiO-66/CdIn2S4 | 300 W Xe lamp AM 1.5 G filter | 100 mL H2O | CO: 11.24; CH4: 2.92 | [ |
Table 3 Photocatalytic CO2 reduction properties of some heterojunction materials.
Photocatalyst | Light source | Experimental condition | Yield (μmol·g-1·h-1) | Ref. |
---|---|---|---|---|
20 mg D-Y-TiO2@ZnIn2S4 | 0.240 W cm−2 LED light (λ = 420 nm) | 10 mL MeCN, 0.1 mol L−1 TEOA, 1/80 mol L−1 BIH | CO: 40.66; H2: 28.40 | [ |
10 mg Co3O4@CdIn2S4 | 300 W Xe lamp (λ > 400 nm) | 400 μmol 2,2-bipyridine, 8 μmol CoCl2, 4 mL TEOA, 4 mL H2O, 16 mL MeCN | CO: 5300 | [ |
10 mg WQDs/CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 10 mL H2O | CO: 8.2; CH4: 1.6 | [ |
0.1 g ZnIn2S4/BiVO4 | 300 W Xe lamp | water vapor | CO: 4.75; CH4: 0.5 | [ |
meso-TiO2@ZnIn2S4/Ti3C2 MXene | 300 W Xe lamp | 0.5 mL H2O | CO: 10.17; CH4: 11.33 | [ |
0.1 g PCMT@In2O3/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 101.62 | [ |
25 mg TiO2@ZnIn2S4 | 300 W Xe lamp | 10 mL H2O | CO: 9.28; CH4: 4.26; CH3OH: 4.78 | [ |
50 mg KCa2Nb3O10/ZnIn2S4 | 300 W Xe lamp | water vapor | CO: 4.69 | [ |
10 mg CdIn2S4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 25 mL reaction solution (140 mL of KHCO3 (0.5 mol L−1), 1.0000 g 2,2-bipyridine, 0.1540 g CoCl2⋅6H2O, 0.1 L TEOA, 0.2 L MeCN) | CO: 1194.5; H2: 475.7 | [ |
4 mg In2S3-CdIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg bipyridine, 2 μmol CoCl2, 1 mL TEOA, 2 mL H2O, 3 mL MeCN | CO: 825 | [ |
10 mg ZnS/ZnIn2S4 | 300 W halogen lamp | 100 ml 0.5 wt% Pt (H2PtCl6) 10 vol% CH3OH | CH3CHO: 61.27; CH3OH: 0.228 | [ |
2 mg g-C3N4/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 15 mg of 2,2-bipyridine, 2 μmol CoCl2, 1 mL TEOA, 3 mL MeCN, 2 mL H2O, | CO: 7368.7 | [ |
10 mg g-C3N4/Au/ZnIn2S4 | 300 W Xe lamp | 15 mg 2,2-bipyridine, 2 μmol CoCl2, 2 mL TEOA, 6 mL MeCN, 4 mL H2O | CO: 242.3 | [ |
50 mg PCN/ZnIn2S4 | 300 W Xe lamp (λ > 420 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 892 | [ |
50 mg ZnIn2S4@CNO | 300 W Xe lamp (λ > 400 nm) | 20 mg 2,2-bipyridine, 4 mL MeCN, 2 mL H2O 1 mL TEOA, 1 µmol CoCl2 | CO: 253.8; CH4: 23.6 | [ |
50 mg CuInS2/Au/g-C3N4 | 300 W Xe lamp (λ > 400 nm) | water vapor | CO: 2.43; CH4: 0.15 | [ |
0.1 g ZnIn2S4/N-doped graphene | 300 W Xe lamp | 10 mL H2O | CO: 2.45; CH4: 1.01; CH3OH: 1.37 | [ |
0.1 g CdIn2S4/mpg-C3N4 | 300 W Xe lamp (λ > 420 nm) | 100 mL aqueous solution, 0.1 mol L−1 NaOH | CH3OH: 42.7 | [ |
50 mg NH2-UiO-66/CdIn2S4 | 300 W Xe lamp AM 1.5 G filter | 100 mL H2O | CO: 11.24; CH4: 2.92 | [ |
Fig. 11. Evolutionary processes (a) and proposed photocatalytic CO2 reduction mechanism (b) for In2S3-CdIn2S4. Reprinted with permission from Ref. [139]. Copyright 2017, American Chemical Society. Evolutionary processes (c) and proposed photocatalytic CO2 reduction mechanism (d) for In2S3-CuInS2. Reprinted with permission from Ref. [105]. Copyright 2018, the Royal Society of Chemistry.
Fig. 12. Synthesis mechanism (a), HR-TEM image (b), photocatalytic CO2 reduction mechanism (c) and reaction activity (d) of ZnS/ZnIn2S4 heterostructure. Reprinted with permission from Ref. [140]. Copyright 2017, Elsevier.
Fig. 13. TEM image (a) and HRTEM image (b) of ZnIn2S4/TiO2. (c) Schematic illustration of the possible reaction processes of ZnIn2S4/TiO2 photocatalysts. Reprinted with permission from Ref. [131]. Copyright 2017, Elsevier. (d) Charge carrier schematic illustration; photocatalytic CO2 reduction activities (e) and stability (f) of TiO2/CuInS2. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier. (g,h) Calculated work function of WO3 QDs and CdIn2S4. (i) Schematic illustration of charge carrier in WO3 QDs/CdIn2S4 heterojunction. Reprinted with permission from Ref. [136]. Copyright 2020, Elsevier.
Fig. 14. (a) Synthesis mechanism of PCN/ZnIn2S4 layered heterojunction. Reprinted with permission from Ref. [142]. Copyright 2018, Wiley. Synthesis mechanism of T-CN/ZIS heterojunction (b) and SEM images of melamine-cyanuric acid precursor (c), T-CN (d) and T-CN/ZIS (e). Reprinted with permission from Ref. [147]. Copyright 2020, Elsevier.
Fig. 16. Synthesis mechanism (a) and electron transfer mechanism diagram (b) of CuInS2/C/TiO2 hierarchical tandem heterostructure. Reprinted with permission from Ref. [152]. Copyright 2022, Elsevier. (c) Scheme illustrating the photocatalytic CO2 reduction mechanism over the CeO2/ZnIn2S4 composite. Reprinted with permission from Ref. [41]. Copyright 2019, Elsevier.
Fig. 17. Contour plots of the femtosecond TA spectra of B-CN (a) and MCNM (b). (c) TA carrier dynamics of B-CN and MCNM recorded at 600 nm subtracted from the ground state bleach signal. Reprinted with permission from Ref. [160]. Copyright 2020, Elsevier.
Fig. 18. In situ FTIR spectra for co-adsorption of a mixture of CO2 and H2O vapour on the VS-CuIn5S8 single unit-cell layers (a) and the pristine CuIn5S8 single-unit-cell layers (b). Reprinted with permission from Ref. [36]. Copyright 2019, Nature. In situ FT-IR spectra of CO2 and H2O interaction withCu0.8Au0.2/TiO2 (c), Au/TiO2 (d), Cu/TiO2 (e), and TiO2 (f) under the dark and the simulated sunlight, respectively. The curves from bottom to top in the figure represent background, adsorption for 30 min, illumination for 2, 4, 8, 12, 24, and 30 min, respectively. Reprinted with permission from Ref. [12]. Copyright 2021, American Chemical Society.
Fig. 19. In situ Raman spectroscopy results at different current densities during CO2RR. Copper oxide region of the reconstructed Cu2P2O7 electrode (a) and CuO-800 electrode (c) (Raman shift between 400-700 cm-1). CO region of the reconstructed Cu2P2O7 electrode (b) and CuO-800 electrode (d) (Raman shift between 1600-2200 cm-1). Reprinted with permission from Ref. [165]. Copyright 2022, Wiley.
Fig. 20. The calculated models and density of states of CdIn2S4 (a,c) and Vs-CdIn2S4 (b,d). The pink, blue, and yellow atoms stand for S, In, Cd atoms and S vacancy, respectively. Reprinted with permission from Ref. [123]. Copyright 2020, Elsevier. The calculated models and charge difference distribution of interstitial C doped MgIn2S4 from top view (e,g) and side view (f,h). The green, brown, yellow and black atoms stand for Mg, In, S and C atoms, respectively. Reprinted with permission from Ref. [166]. Copyright 2021, Elsevier.
Fig. 21. Calculated work function of monolayer PCN (a), CIS (112) surface (b) and monolayer CIS/Au/PCN heterostructure (c). (d) The diagram of the band edge positions before and after contact of CIS/Au/PCN heterostructure. Reprinted with permission from Ref. [143]. Copyright 2019, Wiley.
Fig. 22. Free energy diagrams of CO2 photoreduction to CH4 for the VS-CuIn5S8 single-unit-cell layers (a) and the pristine CuIn5S8 single-unit-cell layers (b). Reprinted with permission from Ref. [36]. Copyright 2019, Nature.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[6] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[7] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[8] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[9] | 李晓娟, 祁明雨, 李婧宇, 谭昌龙, 唐紫蓉, 徐艺军. PdS修饰的ZnIn2S4复合材料用于可见光催化硫醇偶联制备二硫化物同时产氢[J]. 催化学报, 2023, 51(8): 55-65. |
[10] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[11] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[12] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[13] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[14] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[15] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||