催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2826-2836.DOI: 10.1016/S1872-2067(22)64141-X
Francisco J. Sarabia, Víctor Climent*(), Juan M. Feliu#(
)
收稿日期:
2022-03-30
接受日期:
2022-06-02
出版日期:
2022-11-18
发布日期:
2022-10-20
通讯作者:
Víctor Climent,Juan M. Feliu
Francisco J. Sarabia, Víctor Climent*(), Juan M. Feliu#(
)
Received:
2022-03-30
Accepted:
2022-06-02
Online:
2022-11-18
Published:
2022-10-20
Contact:
Víctor Climent, Juan M. Feliu
摘要:
鉴于析氢反应(HER)与制氢技术直接相关, 而氢气是氢经济中的能量载体, 因此, 深入理解析氢反应(HER)速率的控制参数非常重要. 前期关于碱性介质中Ni(OH)2修饰的Pt(111)上激光诱导温度跃迁(LITJ)实验结果已经揭示了界面电场对HER速率有较大影响. 推测认为, 少量的Ni(OH)2会使电极的零自由电荷电势向析氢开始的方向负移, 从而导致电场减弱. 为进一步验证这一推测, 本文将研究对象扩展到Fe(OH)2修饰的Pt(111)表面, 对其伏安特性进行分析. 伏安图在析氢区域显示出一个峰, 表明修饰层发生Fe(II)到Fe(0)的转变. 与库仑分析结果一致, OH吸附区的伏安特征与Fe物种被氧化至+3价有关. LITJ结果显示, 亲氧的Fe物质与水分子之间存在强烈的相互作用, 其使熵最大处的电势远离HER的开始电势. 因此, 最具催化性的表面应该是Fe覆盖度最低的表面.
Francisco J. Sarabia, Víctor Climent, Juan M. Feliu. 碱性介质中界面电场对铁原子吸附修饰Pt(111)表面HER性能的影响[J]. 催化学报, 2022, 43(11): 2826-2836.
Francisco J. Sarabia, Víctor Climent, Juan M. Feliu. Effect of the interfacial electric field on the HER on Pt(111) modified with iron adatoms in alkaline media[J]. Chinese Journal of Catalysis, 2022, 43(11): 2826-2836.
Fig. 1. Cyclic voltammograms of the Pt(111) surface modified with different Fe(OH)2 coverages. Scan rate 50 mV s?1. 0.1 mol L?1 NaOH. Each one of these coverages 0.13, 0.23 and 0.38 were carried out after holding the working electrode under open circuit conditions during 35 s, 60 s, and 3 min respectively in an aqueous solution of 10-4 mol L?1 Fe(ClO4)2. Coverage is calculated according to Eq. (2).
Number of cycle | Charge (µC cm‒2) |
---|---|
1 | 246 |
2 | 248 |
4 | 264 |
7 | 269 |
12 | 280 |
30 | 288 |
Table 1 Average charge obtained from the anodic and cathodic peaks for each number of cycles from Fig. 2.
Number of cycle | Charge (µC cm‒2) |
---|---|
1 | 246 |
2 | 248 |
4 | 264 |
7 | 269 |
12 | 280 |
30 | 288 |
Fig. 3. CO charge displacement curves for different iron coverages registered at 0.1 V (a) and their respective CO stripping recorded at 20 mV s?1 (b). Supporting electrolyte: 0.1 mol L?1 NaOH.
Fig. 4. Cyclic voltammogram for the Pt(111) modified with iron (θFe = 0.13 has been chosen as representative) before and after the CO stripping after the CO displacement at 0.1 V. Scan rate 50 mV s?1. Supporting electrolyte: 0.1 mol L?1 NaOH.
Fig. 5. CO charge displacement curves registered at 0.25 V for free Pt(111) and modified holding the electrode in 10-4 mol L?1 Fe(ClO4)2 during 35 s (a) and their respective CO stripping recorded at 20 mV s?1 (b). Supporting electrolyte: 0.1 mol L?1 NaOH.
Fig. 6. Cyclic voltammogram recorded after CO displacement at 0.25 V and CO stripping for the Pt(111) surface modified holding the electrode in 10-4 mol L?1 Fe(ClO4)2 during 35 s. Scan rate 50 mV s?1. Supporting electrolyte: 0.1 mol L?1 NaOH.
Fig. 7. HER of the Pt(111) modified with different iron coverages at 20 mV s?1 in alkaline media (0.1 mol L?1 NaOH) (a) and their respective Tafel plots (b). Tafel slopes measured in the linear region are indicated in Fig. (b). Coverages are calculated according to Eq. (2), except for the curve with θFe = 0.09, where the coverage was estimated from the hydrogen charge, according to Eq. (1). For the green and blue curves, the coverage is so low that cannot be estimated according to voltammetric measurements.
Fig. 8. Redox couple appearing during the HER in alkaline media (0.1 mol L?1 NaOH) of the Pt(111) surface modified with different iron amounts at 20 mV s?1.
Time in 0.1 mmol L‒1 Fe(ClO4)2 | Cathodic peak (µC cm‒2) | Anodic peak (µC cm‒2) |
---|---|---|
35 s | 184 | 63.5 |
60 s | 328 | 112 |
3 min | 432 | 181 |
Table 2 Involved charge under the peaks associated to the reduction and oxidation of the adsorbed iron species at -0.2 and -0.13 V for each iron coverage.
Time in 0.1 mmol L‒1 Fe(ClO4)2 | Cathodic peak (µC cm‒2) | Anodic peak (µC cm‒2) |
---|---|---|
35 s | 184 | 63.5 |
60 s | 328 | 112 |
3 min | 432 | 181 |
Fig. 11. Laser ΔE vs. t transients recorded on the Pt(111) surface modified with different coverages of Fe(OH)2: << 0.09 (a), < 0.09 (b), 0.20 (c) and 0.40 (d). Laser beam energy: 0.8 mJ. Supporting electrolyte: 0.1 mol L?1 NaOH.
Fig. 12. ΔEpeak corresponding to each transient peak vs E for each iron coverage. (a) In case of the bipolar transient the value of zero has been given to ΔE, around which the peak potential is shown for each positive and negative contribution. (b) Plot of the thermal coefficients for each applied potential for the Pt(111) modified with different iron coverages. The corresponding values to the blank are taken from previous reports.
|
[1] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[2] | 韩策, 梅丙宝, 张庆华, 张慧敏, 姚鹏飞, 宋平, 宫雪, 崔培昕, 姜政, 谷林, 徐维林. 钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应[J]. 催化学报, 2023, 51(8): 80-89. |
[3] | 陈斌, 蒋亚飞, 肖海, 李隽. 石墨炔负载的双金属单团簇催化剂用于碱性析氢反应[J]. 催化学报, 2023, 50(7): 306-313. |
[4] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[5] | Sue-Faye Ng, 陈星竹, Joel Jie Foo, 熊墨, Wee-Jun Ong. 2D氮化碳: 通过调节非金属硼掺杂C3N5阐明宽酸性及碱性pH范围的光催化析氢的反应机理[J]. 催化学报, 2023, 47(4): 150-160. |
[6] | 李卓根, 张伟斌, 朱陆军, 高健智, 石先进, 黄宇, 刘鹏, 朱刚强. 通过实验和理论验证Pt0/SrTiO3‒δ复合催化剂双反应路径促进CO2还原[J]. 催化学报, 2023, 46(3): 113-124. |
[7] | 王妮, 张学鹏, 韩金秀, 雷海涛, 张清鑫, 张航, 张伟, 曹睿. 第二配位层磺酸根在电催化析氢反应中的作用[J]. 催化学报, 2023, 45(2): 88-94. |
[8] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[9] | 苏慧, 姜静, 宋少佳, 安博涵, 李宁, 高旸钦, 戈磊. 过渡金属硫化物相关电催化剂的设计与应用研究[J]. 催化学报, 2023, 44(1): 7-49. |
[10] | 白雪, 管景奇. 过渡金属碳氮化物在电催化领域的应用: 改性和杂化[J]. 催化学报, 2022, 43(8): 2057-2090. |
[11] | 黄楚强, 周建清, 段丁槊, 周前程, 汪杰明, 彭博文, 余罗, 余颖. 异质原子在碱性电解水催化剂中的作用——反应机理[J]. 催化学报, 2022, 43(8): 2091-2110. |
[12] | 李鹏, 赵国强, 程宁燕, 夏力学, 李晓宁, 陈亚平, 劳梦梦, 程振祥, 赵焱, 徐迅, 姜银珠, 潘洪革, 窦士学, 孙文平. 过渡金属单原子功能化碳载体促进碱性氢电催化反应动力学[J]. 催化学报, 2022, 43(5): 1351-1359. |
[13] | 鲁利梅, 张以河, 陈振胜, 冯峰, 滕凯旋, 张舒婷, 庄佳琳, 安琪. 界面N-C负载三元Zn-Co-Ni合金纳米材料对电催化水分解的协同增强效应[J]. 催化学报, 2022, 43(5): 1316-1323. |
[14] | 黄根, 李莹莹, 陈如, 肖朝辉, 杜石谦, 黄裕呈, 谢超, 董崇礼, 易海波, 王双印. 电化学形成的PtFeNi合金与含缺陷NiFe LDHs载体之间的电荷转移实现高效水分解[J]. 催化学报, 2022, 43(4): 1101-1110. |
[15] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||