催化学报 ›› 2023, Vol. 55: 44-115.DOI: 10.1016/S1872-2067(23)64544-9
Diab khalafallaha,b,*(), 张运祥a, 王昊c, Jong-Min Leed,*(
), 张勤芳a,e,*(
)
收稿日期:
2023-08-04
接受日期:
2023-10-13
出版日期:
2023-12-18
发布日期:
2023-12-07
通讯作者:
*电子信箱: 基金资助:
Diab khalafallaha,b,*(), Yunxiang Zhanga, Hao Wangc, Jong-Min Leed,*(
), Qinfang Zhanga,e,*(
)
Received:
2023-08-04
Accepted:
2023-10-13
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Diab Khalafallah received his M.Sc. degree in 2012 and PhD degree in 2017. He is currently an Associate professor at the Faculty of Energy Engineering, Aswan University (Egypt). Khalafallah joined the Yancheng Institute of Technology (Jiangsu, China) as a researcher in the School of Materials Science and Engineering. His research activities are focused on developing functional materials for energy conversion and storage systems including hybrid water electrolysis, hydrogen evolution reaction, supercapacitors, and water splitting.Supported by:
摘要:
随着全球能源需求增长和环境污染加剧, 发展可持续能源减少对化石燃料(如石油、天然气和煤炭等)的消耗成为实现人类社会可持续发展的关键. 氢能因其能量密度高、燃烧无污染、应用形式多样被认为是最理想的替代能源. 电解水制氢包括阴极析氢反应(HER)和阳极析氧反应(OER), 具有绿色环保、生产灵活和纯度高等特点, 是理想的绿色生产技术之一. 然而, 阳极电解水产氧反应动力学缓慢, 导致阴极的产氢效率低. 此外, 在电解水过程中, 会产生高氧化性的过氧化氢(H2O2), 降低电解水膜的寿命, 阻碍电解水技术的实际应用. 因此, 亟待开发新型高效、稳定且具有高附加值的电解水催化剂. 目前, 电化学整体水分解(OWS)制氢技术存在安全风险、投资回报低、阳极OER动力学慢和电能消耗大等问题, 将阳极氧化反应与混合电解水(HWE)装置中的HER相结合, 借助热力学较好的电氧化反应取代缓慢的传统OER反应协同产氢, 可以有效克服传统电解水的产率不足, 解决污染排放和生物质回收问题.
本文综述了协同电催化用于联产氢气和低能耗、高法拉第效率高价值产品的催化剂结构设计, 揭示不同协同电催化系统的催化途径和意义, 以实现更高效、零碳排放的目标. 首先, 介绍了HWE系统的发展现状, 重点关注各种富氢物质的协同电解, 例如酒精、生物质衍生物、葡萄糖和在阳极形成的高附加值化学品. 与传统阳极OER工艺相比, 有机/生物质底物小分子的OER表现出较低的热力学需求, 降低产氢能耗. 随后, 详细介绍了基于阴极HER和阳极OER协同电解反应、协同催化HWE高效电极/电催化剂的合理设计, 以实现高催化活性、高选择性和良好的电化学稳定性. 重点讨论了新型电极/电催化剂设计、活性改进以及结构-催化活性关系提升的合成策略. 再后, 讨论了基于有机/生物质小分子协同HWE系统电催化的代表性研究进展和突破, 强调了其在促进可持续低压制氢方面的重要作用, 并回顾了近年来HWE的研究突破, 同时, 对一些可行性分析和机理探索进行比较, 为制氢提供了新的研究方向. 最后, 提出了协同电催化制氢面临的挑战并展望未来的研究方向.
综上, 大多数电催化剂存在催化活性低、稳定性差等问题, 要实现可持续、经济高效和清洁的产氢技术, 仍有很多方面需要进一步的深入研究. 本文综述了高效多功能HWE系统发展现状和催化剂结构设计, 为电解水制氢和高附加值产品的节能联产提供一定的参考.
Diab khalafallah, 张运祥, 王昊, Jong-Min Lee, 张勤芳. 联产混合电解水策略实现节能电化学制氢的最新进展[J]. 催化学报, 2023, 55: 44-115.
Diab khalafallah, Yunxiang Zhang, Hao Wang, Jong-Min Lee, Qinfang Zhang. Energy-saving electrochemical hydrogen production via co-generative strategies in hybrid water electrolysis: Recent advances and perspectives[J]. Chinese Journal of Catalysis, 2023, 55: 44-115.
Fig. 2. (a) The global annual demand for pure or mixed H2 derived from various feedstock for several industrial sectors. Note that Refining, ammonia and “other pure” reflect the applications that require high-purity H2. Direct reduced iron steel production “DRI”, and “Other mixed” represent the applications that use H2 as mixture gas. Reproduced from Ref. [108]. Copyright 2019 U.S. Department of Energy. Traditional alkaline water electrolysis (b), zero-gap proton exchange membrane water electrolysis (PEMWE) under acidic conditions employing the H+ conducting membrane (c), and zero-gap anion exchange membrane water electrolyzer (AEMWE) using the OH- conducting membrane (d). Non-precious electrocatalysts are usually applied for the anode and cathode compartment of AEMWE.
Water electrolysis | Advantage | Disadvantage |
---|---|---|
Traditional/ infinite gap alkaline electrolyzers | 1) low capital costs 2) low-cost electrocatalysts are frequently used in both anode and cathode 3) relatively stable 4) large scale 5) mature technology 6) low-cost transition metals and compounds are employed as anodes | 1) O2/H2 gas crossover 2) low current densities 3) low operational pressure 4) low efficiency and low dynamics 5) corrosive electrolyte |
AEMWEs | 1) combination of traditional alkaline water electrolyzer systems and PEMWEs 2) transition metals and compounds are typically used as the anode electrocatalysts | 1) low OH- conductivity 2) limited durability 3) lab-scale technology 4) low efficiency 5) high cost of AEMs |
PEMWEs | 1) compact design 2) rapid start-up and response 3) offering a high purity H2 4) large current densities 5) high efficiency 6) commercialized technology | 1) high costs of noble metal electrocatalysts and PEMs 2) acidic corrosion environment 3) limited durability |
Table 1 Comparison of low-temperature water electrolyzer systems.
Water electrolysis | Advantage | Disadvantage |
---|---|---|
Traditional/ infinite gap alkaline electrolyzers | 1) low capital costs 2) low-cost electrocatalysts are frequently used in both anode and cathode 3) relatively stable 4) large scale 5) mature technology 6) low-cost transition metals and compounds are employed as anodes | 1) O2/H2 gas crossover 2) low current densities 3) low operational pressure 4) low efficiency and low dynamics 5) corrosive electrolyte |
AEMWEs | 1) combination of traditional alkaline water electrolyzer systems and PEMWEs 2) transition metals and compounds are typically used as the anode electrocatalysts | 1) low OH- conductivity 2) limited durability 3) lab-scale technology 4) low efficiency 5) high cost of AEMs |
PEMWEs | 1) compact design 2) rapid start-up and response 3) offering a high purity H2 4) large current densities 5) high efficiency 6) commercialized technology | 1) high costs of noble metal electrocatalysts and PEMs 2) acidic corrosion environment 3) limited durability |
Fig. 5. (a) Theoretical voltages of electro-coupled alcohol/HER synergistic electrolysis compared with the OWS. Based on the reported literature, the theoretical voltages of the electro-coupled alcohol/HER system were calculated based on the Buttler-Volmer kinetics law as follows: methanol (0.016 V), ethanol (0.084 V), glycerol (0.0029 V), and EG (0.026 V). These data were reported in the Ref. [13]. (b) Thermodynamic potentials of various anodic oxidation reactions synergizing the HWE system. Reprinted with permission from Ref. [61]. Copyright 2018, Springer Nature. Reprinted with permission from Ref. [71]. Copyright 2020, The Royal Society of Chemistry. Reprinted with permission from Ref. [114]. Copyright 2022, Elsevier. Reprinted with permission from Ref. [115]. Copyright 2011, WILEY-VCH. Reprinted with permission from Ref. [117]. Copyright 2022, Springer Nature.
Fig. 7. (a) Time-of-flight secondary ion mass spectrometry patterns of pure Co3O4 and Vo-Co3O4 post the HMF electrooxidation reaction, (b) HMF electrooxidation reaction mechanism on the Vo-Co3O4 surface, and (c) free energies of HMF electrooxidation reaction process. Reprinted with permission from Ref. [143]. Copyright 2021, WILEY-VCH. (d) Free energy diagram of HzOR process on Co3N and PW-Co3N exposed surface. Reprinted with permission from Ref. [117]. Copyright 2022, Springer Nature.
Fig. 8. (a) Cross-sectional view SEM image of Ni0.05/CW electrode and the related magnified observations of selected areas in panel. (b) Water droplet contact angle and (c) underwater gas bubble contact angle measurements of Ni0.01/CW, Ni0.05/CW, Ni0.1/CW, Pt/C/HCCW, and Ni0.05/GP electrodes. (d) An illustration for the gas escape from hydrophilic Ni/CW surface, (e) UOR and OER polarization curves of Ni0.05/CW electrode at a scan rate of 0.5 mV s-1, (f) chronopotentiometry signals of Ni0.05/CW and Ni0.05/GP at a constant current density of 10 mA cm-2 under continuous UOR electrolysis. Insets-(f) show the optical images of gas bubbles disengagement from both electrode surfaces, (g) HR-TEM image of Ni0.05/CW electrode post UOR electrolysis, (h) free energy diagram of UOR process on Ni and NiOOH active surfaces, and (i) calculated DOS of Ni and NiOOH components. Reprinted with permission from Ref. [86]. Copyright 2022, Elsevier.
Fig. 9. (a,b) Field emission scanning electron microscopy (FE-SEM) and (c) TEM portraits of the as-prepared Co(OH)2@HOS/CP electrode, (d) linear sweep voltammetry (LSV) curves of electrodes in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/3.0 mol L-1 CH3OH electrolyte solutions, (e) measured and theoretical values of the H2 amount, (f) long-term stability test of bifunctional Co(OH)2@HOS/CP electrode at 10 mA cm-2. Inset-(f) illustrates a schematic representation of the constructed Co(OH)2@HOS/CP(+,?) electrolyzer cell. Reprinted with permission from Ref. [146]. Copyright 2020, WILEY-VCH. (g) A schematic diagram for the synthesis process of Ni NCNA electrode, (h) FE-SEM image, and (i) water contact angle analysis of Ni NCNA. (j) LSV curves of the devised Ni NCNA(+,?) electrolytic cell for catalyzing the HzOR/HER reactions in the HWE system, and (k) polarization curves after successive 5000 CV times. Inset-(k) presents the recorded i-t signal under a working cell potential of 0.08 V. Reprinted with permission from Ref. [150]. Copyright 2021, WILEY-VCH.
Fig. 10. (a) W L3-edge XANES profile of the Ni-WOx hybrid. (b) Ni K-edge XANES patterns of the Ni-WOx-1.6 V and NiOx-1.6 V. (c) Charge density difference of Ni-WOx analyzed by the DFT calculations. (d) A scheme for the UOR//CO2 electro-reduction system, (e) polarization curves at 10 mV s-1 in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2. Reprinted with permission from Ref. [87]. Copyright 2021, WILEY-VCH. (f) An illustration for the growth of NiFeRh-LDH nanosheet arrays on NF skeleton. SEM (g) and TEM (h) images of NiFeRh-LDH nanostructures. (i) Valance band spectra of nano-structured NiFeRh-LDH and NiFe-LDH materials. (j) The corresponding potentials of the assembled NiFeRh-LDH//NiFeRh-LDH cell to realize different catalytic current densities for overall urea, urine, and OWS in 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2, 1.0 mol L-1 KOH containing urine, and 1.0 mol L-1 KOH, respectively. (k) Long-term stability performance of bifunctional NiFeRh-LDH and benchmarking Pt/C catalyst at 10 mA cm-2. Reprinted with permission from Ref. [152]. Copyright 2021, Elsevier.
Fig. 11. (a) Synthesis route of bifunctional of Ni(OH)2-NiMoOx/NF electrode. SEM images (b,c) HR-TEM image (d), and EDS mapping profiles (e) of nano-structured Ni(OH)2-NiMoOx/NF. Comparative LSV curves of Ni(OH)2-NiMoOx/NF electrode for OER and UOR (f) and polarization signals of the assembled Ni(OH)2-NiMoOx/NF(+,?) electrolyzer cell for catalyzing the UOR/HER synergistic reactions in HWE system (g). Insert-(g) presents the durability test over 40 h continuous electrolysis at 50 mA cm-2. Reprinted with permission from Ref. [157]. Copyright 2019, WILEY-VCH. (h) An illustration for the preparation of Rh/NiV-LDH on NF via a one-pot approach. SEM (i) and aberration-corrected scanning TEM images (j,k) of Rh/NiV-LDH nanosheets network. Free energy analysis on the possible active sites of NiV-LDH and Rh/NiV-LDH nanomaterials (l) and polarization curves (m) of the UOR/HER hybrid electrocatalysis in 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 compared with conventional OWS in a 1.0 mol L-1 KOH using the bifunctional Rh/NiV-LDH electrodes. Reprinted with permission from Ref. [168]. Copyright 2022, Elsevier.
Fig. 12. (a,b) Calculated PDOS of Pt18Ni26Fe15Co14Cu27/C and for methanol adsorption, respectively. Reprinted with permission from Ref. [169]. Copyright 2020, Springer Nature. (c) The UOR mechanism on Ni2Fe(CN)6 surface and related free-energy diagrams showing the decomposition of urea into ammonia on Ni sites and subsequent transformation of ammonia into N2 on Fe sites. (d) In-situ SR-FT-IR signals of Ni2Fe(CN)6 catalyst during UOR and (e) LSV curves of Ni2Fe(CN)6 and NiC2O4 catalysts for UOR. Reprinted with permission from Ref. [170]. Copyright 2021, Springer Nature.
Fig. 13. (a) Fourier transforms FT(k2χ(k)) “k=wave vector and χ(k)=oscillation concerning the photoelectron wavenumber”. Inset-(a) shows the zoomed-in view of Fourier transforms. (b) 1H solid-state MAS NMR measurements of the samples. (c) DOS of M-Ni(OH)2 and P-Ni(OH)2 materials, in which the vertical blue bar demonstrates the reduction in bandgap after sulfur incorporation. (d) CO2 desorption kinetics from the surface of the catalyst. LSV curves (e), and chronoamperometric tests (f) of employed electrocatalysts in 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 electrolyte solution. Reprinted with permission from Ref. [201]. Copyright 2016, WILEY-VCH. (g) A scheme for the growth of Ru/P-NiMoO4@NF nanocomposite. (h) TEM image and related elemental mapping results of Ru/P-NiMoO4@NF electrode. (i) Contact angle measurements of bare NF and Ru/P-NiMoO4@NF nanocomposite. Polarization curves (j) and corresponding Tafel plots (k) of Ru/P NiMoO4@NF(+,?) electrolyzer device for catalyzing the electro-coupled HER/OER and UOR/HER in seawater system. (l) i-t curve of Ru/P-NiMoO4@NF(+,?) electrolytic cell for the UOR/HER synergistic electrolysis. (m) Total and PDOS of NiMoO4, P-NiMoO4, Ru-NiMoO4, and Ru/P-NiMoO4 complexes. Reprinted with permission from Ref. [203]. Copyright 2023, Elsevier.
Fig. 14. (a) Reaction free energy diagram of UOR process on Ni and NiOOH exposed surfaces. Reprinted with permission from Ref. [86]. Copyright 2023, Elsevier. (b) Free energy diagram of MOR on (111)Pt, (111)Pt7Ni2, and (111)PtNi. Reprinted with permission from Ref. [188]. Copyright 2021, WILEY-VCH. (c,d) Free energy profiles of EOR over Pd-Pd and Pd-Zn dual sites, respectively. Reprinted with permission from Ref. [189]. Copyright 2021, Springer Nature. (e) Bader charge calculation results of the surface Co ions on pristine CoOOH and Mo-doped CoOOH, (f) Adsorption energy of urea molecules on CoxMoyOOH and CoOOH. Reprinted with permission from Ref. [86]. Copyright 2022, Elsevier. (g) Calculated PDOS of Pt-Rhene, (h) PDOS of Rh-4d for Pt-Rhene bulk and surface. (i) PDOS of (111)Pt-Rhene and (111)Rhene. Reprinted with permission from Ref. [26]. Copyright 2023, Elsevier.
Electrode/ electrocatalyst | Supporting electrolyte | Oxidizable substrate | Driving cell potential (V)/ current density (mA cm‒2) | FE of H2 (%) | FE of the anodic product (%) | Ref. |
---|---|---|---|---|---|---|
Os-NixP/N-C/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | 1.43@10 | 100% | 92% (formate) | [ |
Ni3S2/CNTs | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | — | 95% | 95% (formate) | [ |
Vp-Ni2P-Pt/CC | 1.0 mol L‒1 KOH/2.0 mol L‒1 CH3OH | methanol | ~ 0.76@10 | 100% | 100% (formate) | [ |
Cu2O-Cu@Ni2P/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | 1.40@10 | — | — | [ |
NiIr-MOF/NF | 1.0 mol L‒1 KOH/4.0 mol L‒1 CH3OH | methanol | 1.39@10 | 100% | 100% (formate) | [ |
NiFe LDH@NiMoeNF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.54@100 | 100% | 97% (formic acid) | [ |
CoxP@NiCo-LDH/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.43@10 | 100% | 100% (formate) | [ |
FeRu-MOF/NF | 1.0 mol L‒1 KOH/4.0 mol L‒1 CH3OH | methanol | 1.4@10 | > 90% | > 90% (formate) | [ |
Pt-Co3O4/CP | 1.0 mol L‒1 KOH/2.0 mol L‒1 CH3OH | methanol | 0.555@10 | 100% | > 66% (formate) | [ |
NiCoMo | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | 1.46@50 | 98% | 85% (formate) | [ |
Ni0.33Co0.67(OH)2/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.65@50 | — | ~100% (formate) | [ |
Pd@Rh0.07Pd NDs | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 0.813@10 | — | — | [ |
Ni(OH)2/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.36@100 | > 92% | 100% (formate) | [ |
NiS2/CFC | 1.0 mol L‒1 KOH/0.45 2-propanol | 2-propanol | ~ 1.41@20 | 100% | 98% (acetone) | [ |
Ni2P/NF | 1.0 mol L‒1 KOH/50 mmol L‒1 BA | BA | 1.45@10 | — | 95.3 (benzoic acid) | [ |
PMo10V2@CTF | 1.0 mol L‒1 KOH/50 mmol L‒1 BA | BA | — | 98% | 96% (benzaldehyde) | [ |
Co0.83Ni0.17/AC | 1.0 mol L‒1 KOH/10 mmol L‒1 BA | BA | 1.54@10 | 98% | 96% (benzoic acid) | [ |
CoNiLDH-3 | 1.0 mol L‒1 KOH/150 mmol L‒1 BA | BA | 1.39@20 | 87% | — (benzoate) | [ |
CC@NiO/Ni3 S2 | 1.0 mol L‒1 KOH/ 0.2 mol L‒1 BA | BA | 1.458@10 | — | 94% (benzoic acid) | [ |
Mo-Ni | 1.0 mol L‒1 KOH/10 mmol L‒1 BA | BA | 1.53@100 | 100% | 96.5 (benzoic acid) | [ |
A-Ni-Co-H/NF | 1.0 mol L‒1 KOH/0.1 mol L‒1 BA | BA | 1.35@100 | — | 93%‒95% (benzoic acid) | [ |
Ni@NiOx | 1.0 mol L‒1 KOH/0.1 mol L‒1 BA | BA | 1.438@10 | 100% | > 96% (benzoic acid) | [ |
NC@CuCo2Nx/CF | 1.0 mol L‒1 KOH/15 mmol L‒1 BA | BA | 1.55@10 | — | 81.3% (benzaldehyde) | [ |
CNFs@NiSe/CC | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | — | — | 98% (formic acid) | [ |
CoSe/CFP | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | glycerol | 0.5@50 | 98% | — | [ |
RhCu-BUNNs | 0.1 mol L‒1 KOH/0.1 mol L‒1 glycerol | glycerol | 0.9@10 | — | — (glyceraldehyde) | [ |
MnO2/CP | 0.005 mol L‒1 H2SO4/ 0.2 mol L‒1 glycerol | glycerol | 1.38@10 | 100 % | ≈ 53% (formic acid) | [ |
CNs@CoPt | 1.0 mol L‒1 KOH/10 mmol L‒1 glycerol | glycerol | 1.52@100 | 97% | 79% (formate) | [ |
NiVRu-LDHs | 1.0 mol L‒1 KOH/0.1 mol L‒1 glycerol | glycerol | 1.56@75 | ≈98 % | > 80% (formate) | [ |
CoP-Cu3P/CC | 1.0 mol L‒1 KOH/0. 1 mol L‒1 glycerol | glycerol | 1.21@10 | — | 80% (formic acid) | [ |
h-Ru-CuxO/CF | 1.0 mol L‒1 KOH/0.5 mol L‒1 EG | EG | 1.25@10 | 100% | 90% (formate) | [ |
Rh/RhOOH | 1.0 mol L‒1 KOH/6.0 mol L‒1 EG | EG | 0.678@10 | 99% | — (glycolate) | [ |
Pd-Ni(OH)2 | 1.0 mol L‒1 KOH/1.0 mol L‒1 EG | EG | 0.69@100 | ≈100% | 86% (glycolic acid) | [ |
CoNi-PHNs | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | ~ 1.56@10 | 90.5% | 94. 1% (acetate) | [ |
Co-S-P/CC | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 1.63@10 | — | 67.2% (acetic acid) | [ |
CuCo2 S4/CC | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 1.59@10 | — | — (acetic acid) | [ |
Ni1‒xCox Se2 | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | — | 100% | 82.2% (acetate) | [ |
Ni-Fe-P/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 1.53@10 | — | — (acetic acid) | [ |
PdSP metallene | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 0.88@10 | 98.21% | — (acetic acid) | [ |
CuSEA/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | — | — | 69% (acetic acid) | [ |
PdMn bimetallene/CP | 1.0 mol L‒1 KOH /0.5 mol L‒1 HCOOK | format | 0.376@10 | 100% | — (carbonate) | [ |
PdNi bimetallene | 1.0 mol L‒1 KOH/0.5 mol L‒1 HCOOK | format | 0.51@10 | — | — | [ |
Table 2 Performance comparison of the anodic electrodes/electrocatalysts for electro-merged alcohol oxidation reaction/HER synergizing HWE system.
Electrode/ electrocatalyst | Supporting electrolyte | Oxidizable substrate | Driving cell potential (V)/ current density (mA cm‒2) | FE of H2 (%) | FE of the anodic product (%) | Ref. |
---|---|---|---|---|---|---|
Os-NixP/N-C/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | 1.43@10 | 100% | 92% (formate) | [ |
Ni3S2/CNTs | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | — | 95% | 95% (formate) | [ |
Vp-Ni2P-Pt/CC | 1.0 mol L‒1 KOH/2.0 mol L‒1 CH3OH | methanol | ~ 0.76@10 | 100% | 100% (formate) | [ |
Cu2O-Cu@Ni2P/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | 1.40@10 | — | — | [ |
NiIr-MOF/NF | 1.0 mol L‒1 KOH/4.0 mol L‒1 CH3OH | methanol | 1.39@10 | 100% | 100% (formate) | [ |
NiFe LDH@NiMoeNF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.54@100 | 100% | 97% (formic acid) | [ |
CoxP@NiCo-LDH/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.43@10 | 100% | 100% (formate) | [ |
FeRu-MOF/NF | 1.0 mol L‒1 KOH/4.0 mol L‒1 CH3OH | methanol | 1.4@10 | > 90% | > 90% (formate) | [ |
Pt-Co3O4/CP | 1.0 mol L‒1 KOH/2.0 mol L‒1 CH3OH | methanol | 0.555@10 | 100% | > 66% (formate) | [ |
NiCoMo | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | 1.46@50 | 98% | 85% (formate) | [ |
Ni0.33Co0.67(OH)2/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.65@50 | — | ~100% (formate) | [ |
Pd@Rh0.07Pd NDs | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 0.813@10 | — | — | [ |
Ni(OH)2/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 CH3OH | methanol | 1.36@100 | > 92% | 100% (formate) | [ |
NiS2/CFC | 1.0 mol L‒1 KOH/0.45 2-propanol | 2-propanol | ~ 1.41@20 | 100% | 98% (acetone) | [ |
Ni2P/NF | 1.0 mol L‒1 KOH/50 mmol L‒1 BA | BA | 1.45@10 | — | 95.3 (benzoic acid) | [ |
PMo10V2@CTF | 1.0 mol L‒1 KOH/50 mmol L‒1 BA | BA | — | 98% | 96% (benzaldehyde) | [ |
Co0.83Ni0.17/AC | 1.0 mol L‒1 KOH/10 mmol L‒1 BA | BA | 1.54@10 | 98% | 96% (benzoic acid) | [ |
CoNiLDH-3 | 1.0 mol L‒1 KOH/150 mmol L‒1 BA | BA | 1.39@20 | 87% | — (benzoate) | [ |
CC@NiO/Ni3 S2 | 1.0 mol L‒1 KOH/ 0.2 mol L‒1 BA | BA | 1.458@10 | — | 94% (benzoic acid) | [ |
Mo-Ni | 1.0 mol L‒1 KOH/10 mmol L‒1 BA | BA | 1.53@100 | 100% | 96.5 (benzoic acid) | [ |
A-Ni-Co-H/NF | 1.0 mol L‒1 KOH/0.1 mol L‒1 BA | BA | 1.35@100 | — | 93%‒95% (benzoic acid) | [ |
Ni@NiOx | 1.0 mol L‒1 KOH/0.1 mol L‒1 BA | BA | 1.438@10 | 100% | > 96% (benzoic acid) | [ |
NC@CuCo2Nx/CF | 1.0 mol L‒1 KOH/15 mmol L‒1 BA | BA | 1.55@10 | — | 81.3% (benzaldehyde) | [ |
CNFs@NiSe/CC | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | methanol | — | — | 98% (formic acid) | [ |
CoSe/CFP | 1.0 mol L‒1 KOH/1.0 mol L‒1 CH3OH | glycerol | 0.5@50 | 98% | — | [ |
RhCu-BUNNs | 0.1 mol L‒1 KOH/0.1 mol L‒1 glycerol | glycerol | 0.9@10 | — | — (glyceraldehyde) | [ |
MnO2/CP | 0.005 mol L‒1 H2SO4/ 0.2 mol L‒1 glycerol | glycerol | 1.38@10 | 100 % | ≈ 53% (formic acid) | [ |
CNs@CoPt | 1.0 mol L‒1 KOH/10 mmol L‒1 glycerol | glycerol | 1.52@100 | 97% | 79% (formate) | [ |
NiVRu-LDHs | 1.0 mol L‒1 KOH/0.1 mol L‒1 glycerol | glycerol | 1.56@75 | ≈98 % | > 80% (formate) | [ |
CoP-Cu3P/CC | 1.0 mol L‒1 KOH/0. 1 mol L‒1 glycerol | glycerol | 1.21@10 | — | 80% (formic acid) | [ |
h-Ru-CuxO/CF | 1.0 mol L‒1 KOH/0.5 mol L‒1 EG | EG | 1.25@10 | 100% | 90% (formate) | [ |
Rh/RhOOH | 1.0 mol L‒1 KOH/6.0 mol L‒1 EG | EG | 0.678@10 | 99% | — (glycolate) | [ |
Pd-Ni(OH)2 | 1.0 mol L‒1 KOH/1.0 mol L‒1 EG | EG | 0.69@100 | ≈100% | 86% (glycolic acid) | [ |
CoNi-PHNs | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | ~ 1.56@10 | 90.5% | 94. 1% (acetate) | [ |
Co-S-P/CC | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 1.63@10 | — | 67.2% (acetic acid) | [ |
CuCo2 S4/CC | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 1.59@10 | — | — (acetic acid) | [ |
Ni1‒xCox Se2 | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | — | 100% | 82.2% (acetate) | [ |
Ni-Fe-P/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 1.53@10 | — | — (acetic acid) | [ |
PdSP metallene | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | 0.88@10 | 98.21% | — (acetic acid) | [ |
CuSEA/NF | 1.0 mol L‒1 KOH/1.0 mol L‒1 C2H5OH | ethanol | — | — | 69% (acetic acid) | [ |
PdMn bimetallene/CP | 1.0 mol L‒1 KOH /0.5 mol L‒1 HCOOK | format | 0.376@10 | 100% | — (carbonate) | [ |
PdNi bimetallene | 1.0 mol L‒1 KOH/0.5 mol L‒1 HCOOK | format | 0.51@10 | — | — | [ |
Fig. 15. (a) The volcano scan of indirect mechanism for flat (circles) and stepped (squares) surfaces. (b) Flat (circles) and stepped (squares) elemental surfaces and bimetallic alloys. Reprinted with permission from Ref. [208]. Copyright 2012, American Chemical Society. TEM (c) and HR-TEM (d) images of as-prepared CuCoSe-HNCs nanocomposite. (e) LSV curves of CuCoSe-HNCs/CC(+,?) electrolytic cell in a 1.0 mol L-1 KOH solution with and without 1.0 mol L-1 CH3OH. (f) The corresponding FE plot of generated formate. (g,h) FT-EXAFS spectra of Co K-edge and Cu K-edge in R space, respectively. (i) Optimized intermediates for hydroxylated heterostructures of Cu2 Se|Co3 Se4-OH through the “O-H” activation pathway of methanol electrooxidation. (j) Energy diagrams of the adsorbed intermediates based on the O-H activation mechanism of methanol electrooxidation on various slab models. Selective distances were provided in ?. Reprinted with permission from Ref. [211]. Copyright 2021, Elsevier.
Fig. 16. (a) Adsorption energies of CH3OH* and OH* on the NiOOH-POx, NiOOH-SOx, and NiOOH-SeOx exposed surfaces. (b) PDOS plots of the Ni 3p and O 2d bands of NiOOH-POx, NiOOH-SOx, and NiOOH-SeOx samples. (c1-c3) Proposed slab models of NiOOH-POx, NiOOH-SOx, and NiOOH-SeOx complexes. (d1-d3) and (e1-e3) Charge density difference of OH intermediates adsorption on the obtained NiOOH-POx, NiOOH-SOx, and NiOOH-SeOx catalytic surfaces, respectively. Yellow and cyan depict the accumulation and depletion of electrons, respectively. (f) Extracted double-layer capacitances (Cp) of samples. (g) Polarization curves of samples in 1.0 mol L-1 KOH/0.5 mol L-1 CH3OH at 5 mV s-1. Reprinted with permission from Ref. [214]. Copyright 2022, Springer Nature. (h) High-resolution Ni 2p XPS spectra and (i) XANES spectra of Ni K-edge for h-NiSe/CNTs-f(fresh), h-NiSe/CNTs-s (primary hydroxylation/oxidation on the surface), h-NiSe/CNTs-o (stable hydroxylation/oxidation on the surface), and Ni foil. (j1-j2) Raman patterns of h-NiSe/CNTs anode in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/1.0 mol L-1 methanol electrolyte solutions. Reprinted with permission from Ref. [215]. Copyright 2021, WILEY-VCH.
Fig. 17. (a,b) Reaction energies of initial steps for dehydrogenation cleavage reactions of C?C bonds (dashed lines) for the (111)Pt at 0 and 0.68 V vs.. RHE, respectively. Reprinted with permission from Ref. [220]. Copyright 2013, Elsevier. (c) The catalyst construction scheme and (c1?c8) SEM and TEM observations. (d1?d4) Polarization curves of ethanol (2 mol L?1), EG (2 mol L?1), glycerol (2 mol L?1), and 1,2-propandiol (2 mol L?1), respectively. Reprinted with permission from Ref. [224]. Copyright 2014, Springer Nature.
Fig. 18. (a) A schematic diagram for the synthesis of NiOOH-CuO/CF hetero-nanostructures. SEM (b) and TEM (c) images of NiOOH-CuO/CF electrode. (d) Polarization curves of NiOOH-CuO/CF(+,?) dual electrode cell for catalyzing the HER//OER and HER//EOR electro-coupled processes. (e) Comparison of the cell potential for the synergistic HER//OER and HER//EOR electrolysis at different current densities. (f) FE for H2 release from electro-coupled EOR/HER in HWE system as a function of working time. (g) Plane-integrated electron density differences. Inset-(g) illustrates the charge density difference throughout the NiOOH-CuOnanocomposite. Yellow and blue areas display electron accumulation and depletion, respectively. (h) Charge density difference of NiOOH-CuO/CF hetero-nanostructures. (i) Free energies of the EOR steps on pure CuO surfaces, pure NiOOH surfaces, CuO at the interface of NiOOH-CuO hetero-nanostructures. Reprinted with permission from Ref. [53]. Copyright 2021, Elsevier. (j,k) TEM and HR-TEM images. (k1?k4) Zoomed in HR-TEM images along the specific planes of NiS2 and CuS and (ii-V) their corresponding Fast Fourier transform profiles. (l) An illustration for the established EOR/HER electrolyzer. (m) LSV curves of the Cu1Ni2-S/G//Cu1Ni2-N electrolyzer in a 1.0 mol L?1 KOH with and without 1.0 mol L?1 ethanol. (n) Home-made self-powered EOR/HER electrolysis system for H2 production and ethyl acetate formation. (o) Long-term durability of EOR/HER synergistic electrolysis. (p) DOS of various models. Rigid band diagrams (q), charge density difference analyses of Cu1Ni2-S (r), and Cu1Ni2-S-Vs (s) fashions, as well as their corresponding sliced electron localization function of Ni1 and Ni2 monolayer. Cyan and yellow zones display charge depletion and accumulation, respectively. Reprinted with permission from Ref. [225]. Copyright 2023, WILEY-VCH.
Fig. 19. (a,b) SEM micrographs of hp-Ni recorded with different magnifications. (c) LSV curves of hp-Ni electrocatalyst in 1.0 mol L?1 KOH and 1.0 mol L?1 KOH/10 mmol L?1 BA at 2 mV s-1. (d) LSV curves of hp-Ni electrocatalyst obtained in 1.0 mol L?1 KOH with 10 mmol L?1 BA, 10 mmol L?1 4-methylbenzyl alcohol (MBA), or 10 mmol L?1 4-nitrobenzyl alcohol (NBA) at 2 mV s-1. (e,f) LSV spectra and corresponding potentials at various current densities of hp-Ni(+,?) dual electrode cell synergizing BAOR/HER and OER/HER electrolysis in 1.0 mol L?1 KOH/10 mmol L?1 BA and 1.0 mol L?1 KOH electrolyte solutions, respectively. (g) Calculated experimental H2 amount compared with the analyzed theoretical amount during the HER process catalyzed by the hp-Ni couple. Reprinted with permission from Ref. [226]. Copyright 2017, American Chemical Society. (h) Typical representative process for the synthesis of Ru-NPs@NCNTs nanocomposite. HR-TEM images (i,j), adsorption mechanism of BA molecules on the Ru surface(k). (l) PDOS of the p-and d-band of carbon and oxygen atoms in BA along the top-layer Ru atoms. (m) LSV curves of Ru-NPs@NCNTs measured with a three-electrode test configuration in the absence and presence of BA at 10 mA cm-2. (n) LSV curves of assembled Pt/C(?)∥Ru-NPs@NCNTs(+) electrolyzer for BAOR/HER in a 1.0 mol L?1 KOH with BA at 10 mA cm-2. Reprinted with permission from Ref. [231]. Copyright 2017, American Chemical Society.
Fig. 20. (a) Glycerol electrooxidation pathway on Pt and Au-based electrodes in an alkaline environment. (b) Glycerol electrooxidation on Pt electrode in acidic media. (c) Glycerol electrooxidation on Pt and Au electrodes in neutral medium. Reprinted with permission from Ref. [234]. Copyright 2011, WILEY-VCH. (d) Representative diagram for the synthesis of NC/Ni-Mo-N nanohybrid on NF. SEM (e), HR-TEM (f) images of NC/Ni-Mo-N nanowires. (g) LSV curves of NC/Ni-Mo-N/NF(+,?) electrolytic cell for the GOR/HER and OER/HER coupled systems in 1.0 mol L-1 KOH/0.1 mol L-1 glycerol and 1.0 mol L-1 KOH electrolyte solutions. (h) FE of H2 production through GOR/HER synergistic electrolysis. (i) Stability test of NC/Ni-Mo-N/NF(+,?) electrolytic cell synergizing the GOR/HER electrolysis for 12 h at 10 mA cm-2. Reprinted with permission from Ref. [236]. Copyright 2021, Elsevier. SEM (j,k), HR-TEM (l) images, STEM and corresponding EDX mapping analyses (m) of Ni-Mo-N/CFC electrode. Insets-(j,k) presents the diameter and thickness distribution profiles of Ni-Mo-N/CFC nanoplates. (n) LSV curves of the N-Mo-N/CFC(+,?) cell for GOR/HER in 1.0 mol L-1 KOH/0. 1 mol L-1 glycerol and OER/HER in 1.0 mol L-1 KOH. (o) Stability test of Ni-Mo-N/CFC(+,?) cell synergizing the GOR/HER electrolysis at a constant 10 mA cm-2 in 1.0 mol L-1 KOH/0. 1 mol L-1 glycerol. (p) FE of electro-integrated GOR/HER couple for H2 generation under different potentials over 12 h continuous electrolysis. (q) Theoretical calculation and experimental analyses of H2 evolution with 100% FE for H2 generation on Ni-Mo-N/CFC catalyst. Reprinted with permission from Ref. [61]. Copyright 2019, Springer Nature.
Fig. 21. XRD pattern (a), HR-TEM image (b), HR-TEM observation (c) highlighting the corresponding atomic lattice of CoNiCuMnMo-NPs. (c1,c2) Atomic fringes along the (2?02) and (02?2) crystal planes, respectively. (d) LSV curves of as-fabricated CoNiCuMnMo-NPs/CC(+)//RhIr/Ti(?) electrolytic device for the GOR/HER synergistic electrolysis in different electrolytes. (e) The applied cell potential of electro-coupled GOR/HER in an asymmetric-electrolyte electrolyzer compared with the traditional alkaline electrolyzer at different catalytic current densities. (f) Long-term stability signals of CoNiCuMnMo-NPs/CC at 50 mA cm-2. Reprinted with permission from Ref. [237]. Copyright 2022, American Chemical Society. (g) The manufacturing process of PtSA-NiCo LDH/NF single atomic electrode. TEM image (h) and HAADF-STEM images (i,j) of PtSA-NiCo LDH/NF. (k,l) EXAFS spectra in R-space and k-space, respectively for the PtSA-NiCo LDH/NF, PtO2, and Pt foil. (m) PDOS spectra and related p-band center of PtSA-NiCo LDH/NF and NiCo LDH/NF. (n) LSV curves of the constructed PtSA-NiCo LDH/NF(+,?) two-electrode cell directing the GOR/HER and OER/HER couples in 1.0 mol L?1 KOH/0. 1 mol L?1 glycerol and 1.0 mol L?1 KOH solutions. (o) FE of generated H2. Reprinted with permission from Ref. [59]. Copyright 2023, Elsevier.
Fig. 22. SEM image (a) and SEM-mapping results (b) of binder-free CoNi0.2P-uNS/NF electrode. (c) HER polarization curves of CoNi0.2P-uNS/NF, CoNi0.2P-NP/NF, and PtC/NF electrodes in a 1.0 mol L-1 KOH solution at 5 mV s-1. (d) LSV curves of CoNi0.2P-uNS/NF in 1 mol L-1 KOH with and without 0.3 mol L-1 ethylene glycol at 5 mV s-1. (e) LSV curves of as-fabricated CoNi0.2P-uNS/NF(+,?) electrolyzer catalysing the EGOR/HER and OER/HER electrolysis systems in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/0.3 mol L-1 EG at 5 mV s-1. (f) LSV curves of CoNi0.2P-uNS/NF(+,?) electrolyzer in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/0.3 g L?1 PET electrolyte solutions at 5 mV s-1. Reprinted with permission from Ref. [239]. Copyright 2023, Elsevier. (g) Fabrication of freestanding Ni3N-Ni0.2Mo0.8N NWs/CC electrode. SEM (h), TEM (i) images of engineered Ni3N-Ni0.2Mo0.8N NWs. (j) Polarization curves of the assembled Ni3N-Ni0.2Mo0.8N NWs/CC(+,?) electrocatalytic cell directing the electro-coupled GOR/HER electrolysis and conventional OER/HER system. (k) Comparison for the measured and anticipated quantities of released H2 gas, (l) Long-term stability of Ni3N-Ni0.2Mo0.8N NWs/CC(+,?) dual electrode cell at 10 mA cm-2. Inset-(l) displays the anode and cathode during electrolysis. (m) Adsorption of glycerol molecules on the surface, (n) calculated DOS of Ni3N-Ni0.2Mo0.8N, Ni0.2Mo0.8N, and Ni3N compounds. (o) Electron density at the Ni3N-Ni0.2Mo0.8N heterointerface region. Reprinted with permission from Ref. [240]. Copyright 2022, Elsevier.
Fig. 23. TEM images (a,b) and aberration-corrected HAADF-STEM (c-e) of structured PdIr BNRs. (f) LSV curves of PdIr BNRs-based catalyst for IOR in a 1.0 mol L-1 KOH with various isopropanol concentrations under three-electrode test conditions. (g) LSV curves of the devised PdIr BNRs(+,?) two-electrode cell synergizing the IOR/HER and OER/HER synergistic electrolysis in 1.0 mol L-1 KOH/1.0 mol L-1 isopropanol and 1.0 mol L-1 KOH electrolytes. (h) LSV curves of PdIr BNRs(+,?) electrolyzer in 1.0 mol L-1 KOH/1.0 mol L-1 isopropanol and {1.0 mol L-1 KOH/1.0 mol L-1 isopropanol}/seawater. (i) i-t signals of PdIr BNRs(+,?) electrolyzer in 1.0 mol L-1 KOH/1.0 mol L-1 isopropanol and {1.0 mol L-1 KOH/1.0 mol L-1 isopropanol}/seawater over 15 h electrolysis at 10 mA cm-2. Reprinted with permission from Ref. [244]. Copyright 2011, WILEY-VCH. (j) LSV curves of Ni3 S2/NF electrode for HER in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/10 mM HMF at 2 mV s-1. (k) LSV curves of Ni3 S2/NF(+,?) driving the HMFOR/HER and OER/HER coupled processes in 1.0 mol L-1 KOH/10 mmol L-1 HMF and 1.0 mol L-1 KOH. (l) GC analysis of H2 amount compared with the theoretically estimated value, demonstrating a 100% FE for H2 evolution through electro-integrated Ni3 S2/NF(+,?) system. Reprinted with permission from Ref. [247]. Copyright 2016, American Chemical Society. (m) LSV curves of constructed Ni2P NPA/NF(+,?) electrolytic cell promoting the HMFOR/HER and OER/HER synergistic electrolysis in 1.0 mol L-1 KOH/10 mmol L-1 HMF and 1.0 mol L-1 KOH. (n) Experimentally analyzed H2 quantity compared with the theoretically calculated amount, and (o) Faradaic efficiencies of constructed Ni2P NPA/NF(+,?) electrolytic cell for simultaneous H2 and FDCA co-production in 1.0 mol L-1 KOH/10 mmol L-1 HMF electrolyte solution. Reprinted with permission from Ref. [248]. Copyright 2011, WILEY-VCH.
Electrode/ electrocatalyst | Supporting electrolyte | Oxidizable substrate | Driving cell potential (V)/ current density (mA cm‒2) | Anodic product | FE of the anodic product (%) | Ref. |
---|---|---|---|---|---|---|
E-CoAl-LDH-NSA | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.74@50 | FDCA | 99.1 | [ |
NiCo2O4 | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | — | FDCA | > 99 | [ |
Co0.4NiS@NF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | — | FDCA | ― | [ |
NiCu NTs | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.62@100 | FDCA | ~96 | [ |
(AuPd)7 | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | — | FDCA | — | [ |
Cu foam | 1.0 mol L‒1 KOH/50 mmol L‒1 HMF | HMF | 0.27@100 | FDCA | — | [ |
MoO2-FeP@C | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.486@10 | FDCA | 93.4 | [ |
NiCo-Mo2N/NF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.36@100 | FDCA | 98.65 | [ |
Mn0.2NiS/GF | 1.0 mol L‒1 KOH/0.1 mol L‒1 HMF | HMF | — | FDCA | 91.3 | [ |
NiSx/NiOx(OH)y | 1.0 mol L‒1 KOH/50 mmol L‒1 HMF | HMF | 1.24@10 | FDCA | 98.3 | [ |
Ni-Co2P | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.53@10 | FDCA | > 95 | [ |
NiSe@NiOx | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.56@20 | FDCA | 97 | [ |
NiCoNSs/CuNWs | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.44@10 | FDCA | — | [ |
Cu foam | 1.0 mol L‒1 KOH/50 mmol L‒1 FF | FF | 0.31@100 | FA | — | [ |
CuSEA/NF | 1.0 mol L‒1 KOH/20 mmol L‒1 FF | FF | — | FA | 61 | [ |
1.0 mol L‒1 KOH/20 mmol L‒1 HMF | HMF | — | FDCA | 96 | [ | |
CoO-Co@C/CF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.448@10 | FDCA | 99.4 | [ |
3D N-MoO2/Ni3 S2 NF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 2.08@100 | — | — | [ |
Co-NixP@C | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.66@100 | FDCA | 96.8 ± 1.5 | [ |
NiVP/Pi-VC | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.3@10 | glucaric acid, gluconolactone, and gluconic acid | — | [ |
CoOOH | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.3@10 | ― | — | [ |
Cu(OH)2 | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 0.92@100 | gluconic acid | 98.7 | [ |
NiCoSex | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.5@200 | ― | — | [ |
Fe0.1-CoSe2 | 1.0 mol L‒1 KOH/0.5 mol L‒1 glucose | glucose | 0.72@10 | gluconate | 86.7 | [ |
Co0.5Ni0.5(OH)2 | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.22@10, 1.56@100 | — | — | [ |
Fe2P/SSM | 1.0 mol L‒1 KOH/0.5 mol L‒1 glucose | glucose | 1.22@10 | — | — | [ |
Ru@Ni-B | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.24@10, 1.36@50 | — | — | [ |
Commercial cobalt- nickel foam (CNF-60) | 1.0 mol L‒1 KOH/0. 15 mol L‒1 glucose | glucose | 133@10 | — | — | [ |
Table 3 Recently reported electrodes/electrocatalysts for HMFOR, FFOR, and GcOR-assisted H2 generation in HWE systems.
Electrode/ electrocatalyst | Supporting electrolyte | Oxidizable substrate | Driving cell potential (V)/ current density (mA cm‒2) | Anodic product | FE of the anodic product (%) | Ref. |
---|---|---|---|---|---|---|
E-CoAl-LDH-NSA | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.74@50 | FDCA | 99.1 | [ |
NiCo2O4 | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | — | FDCA | > 99 | [ |
Co0.4NiS@NF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | — | FDCA | ― | [ |
NiCu NTs | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.62@100 | FDCA | ~96 | [ |
(AuPd)7 | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | — | FDCA | — | [ |
Cu foam | 1.0 mol L‒1 KOH/50 mmol L‒1 HMF | HMF | 0.27@100 | FDCA | — | [ |
MoO2-FeP@C | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.486@10 | FDCA | 93.4 | [ |
NiCo-Mo2N/NF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.36@100 | FDCA | 98.65 | [ |
Mn0.2NiS/GF | 1.0 mol L‒1 KOH/0.1 mol L‒1 HMF | HMF | — | FDCA | 91.3 | [ |
NiSx/NiOx(OH)y | 1.0 mol L‒1 KOH/50 mmol L‒1 HMF | HMF | 1.24@10 | FDCA | 98.3 | [ |
Ni-Co2P | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.53@10 | FDCA | > 95 | [ |
NiSe@NiOx | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.56@20 | FDCA | 97 | [ |
NiCoNSs/CuNWs | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.44@10 | FDCA | — | [ |
Cu foam | 1.0 mol L‒1 KOH/50 mmol L‒1 FF | FF | 0.31@100 | FA | — | [ |
CuSEA/NF | 1.0 mol L‒1 KOH/20 mmol L‒1 FF | FF | — | FA | 61 | [ |
1.0 mol L‒1 KOH/20 mmol L‒1 HMF | HMF | — | FDCA | 96 | [ | |
CoO-Co@C/CF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.448@10 | FDCA | 99.4 | [ |
3D N-MoO2/Ni3 S2 NF | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 2.08@100 | — | — | [ |
Co-NixP@C | 1.0 mol L‒1 KOH/10 mmol L‒1 HMF | HMF | 1.66@100 | FDCA | 96.8 ± 1.5 | [ |
NiVP/Pi-VC | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.3@10 | glucaric acid, gluconolactone, and gluconic acid | — | [ |
CoOOH | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.3@10 | ― | — | [ |
Cu(OH)2 | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 0.92@100 | gluconic acid | 98.7 | [ |
NiCoSex | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.5@200 | ― | — | [ |
Fe0.1-CoSe2 | 1.0 mol L‒1 KOH/0.5 mol L‒1 glucose | glucose | 0.72@10 | gluconate | 86.7 | [ |
Co0.5Ni0.5(OH)2 | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.22@10, 1.56@100 | — | — | [ |
Fe2P/SSM | 1.0 mol L‒1 KOH/0.5 mol L‒1 glucose | glucose | 1.22@10 | — | — | [ |
Ru@Ni-B | 1.0 mol L‒1 KOH/0.1 mol L‒1 glucose | glucose | 1.24@10, 1.36@50 | — | — | [ |
Commercial cobalt- nickel foam (CNF-60) | 1.0 mol L‒1 KOH/0. 15 mol L‒1 glucose | glucose | 133@10 | — | — | [ |
Fig. 24. (a) The construction of CuxS@NiCo-LDHs core-shell nanocomposites. (b?d) SEM images of optimized CuxS@Ni0.75Co0.25OmHn nanocomposite. (e) Calculated PDOS of Ni0.75Co0.25-LDH and NiOOH. (f) Ni 2p3/2 XPS spectra of CuxS@Ni0.75Co0.25OmHn and CuxS@NiOmHn nanocomposites. (g) Schematic illustration for the electronic structure of Ni cations with Ni2+/Ni3+ valence states. (h) HER polarization curves of CuxS@Ni0.75Co0.25OmHn electrode in 1.0 mol L?1 KOH and 1.0 mol L?1 KOH/10 mmol L?1 HMF solutions. (i) LSV spectra of established CuxS@Ni0.75Co0.25OmHn//CuxS@Ni0.75Co0.25OmHn electrolytic cell boosting electro-merged HMFOR/HER synergistic electrolysis in 1.0 mol L?1 KOH/10 mmol L?1 HMF compared with the conventional OER/HER electrolysis in a 1.0 mol L?1 KOH. Reprinted with permission from Ref. [249]. Copyright 2020, The Royal Society of Chemistry.
Fig. 25. (a) Reactions pathway of glucose electrooxidation. (b) LSV spectra of NiFeOx-NF and NiFeNx-NF electrodes for GCOR and OER in a 1.0 mol L-1 KOH with and without 100 mmol L-1 glucose at 5 mV s-1. (c) Correlations between capacitive current density and applied scan rate for different electrodes. (d) Comparative overall glucose electrolysis and OWS using the assembled NiFeOx-NF(+)//NiFeNx-NF(?) electrolytic cell in 1.0 mol L-1 KOH/100 mmol L-1 glucose and 1.0 mol L-1 KOH electrolyte solutions. (e) Long-term durability profile of overall glucose electrolysis at a constant cell voltage of 1.4 V. Reprinted with permission from Ref. [92]. Copyright 2020, Springer Nature. (f) HR-TEM image of as-designed Cu(OH)2 electrode. (g,h) HR-TEM image after OER process in a 1.0 mol L-1 KOH solution and after GCOR in 1.0 mol L-1 KOH/0.1 mol L-1 glucose, respectively, (i,j) in-situ Raman profiles of electrode during electrocatalytic reaction in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/0.1 mol L-1 glucose, respectively. (k,l) ex-situ XPS characterizations of Cu(OH)2 electrode during electrocatalytic process in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/0.1 mol L-1 glucose, respectively. (m) LSV curves of the Cu(OH)2(+)//Pt/C(?) flow cell electrolyzer boosting the overall glucose electrolysis and OWS. (n) Comparative analysis of the energy consumption for H2 production via GcOR synergizing HWE system and conventional OWS. Reprinted with permission from Ref. [203]. Copyright 2021, WILEY-VCH. (o) HR-TEM image of Co@NPC-800 material. (p) HER polarization profiles of Co@NPC-800 catalyst before and after 1000 CV times in 0.5 mol L-1 H2SO4 electrolyte. Inset-(p) represents the i-t signal for 50 h HER catalysis. (q) Polarization curves of Co@NPC-800 catalyst in 1.0 mol L-1 KOH and 1.0 mol L-1 KOH/0.1 mol L-1 glucose at 5 mV s-1. (r) Polarization spectra of Co@NPC-800 catalyst for GCOR in 1.0 mol L-1 KOH with different concentrations of glucose. (s) Glucose adsorption energy. (t) Hydrogen adsorption free energy of various N motifs at their suitable catalytic sites. (u) LSV curves of Co@NPC-800(+,?) electrolyzer for overall glucose electrolysis in 1.0 mol L-1 KOH/0.1 mol L-1 glucose and OWS in 1.0 mol L-1 KOH at 5 mV s-1. (v) Oxidation product yield after 15 h glucose electrolysis. Reprinted with permission from Ref. [270]. Copyright 2022, Elsevier.
Fig. 26. Low-resolution TEM image (a), AFM scan (b), HR-TEM image (c), and electron energy-loss spectroscopy mapping results (d) of existing elements. (e) Polarization curves of the overall hydrazine electrolysis in 1.0 mol L?1 KOH/0.1 mol L?1 N2H4 at 25 °C directed by 20 wt% Pt/C(+,?)-, pure CoS2 nanosheets(+,?)-, and Fe-CoS2(+,?)-based two-electrode electrolyzers. (f) An illustration for self-powered H2 production system comprising a direct hydrazine fuel cell and an overall hydrazine electro-splitting unit. (g) Produced H2 and N2 amounts with 5.3 mol L?1 N2H4 at 0.7 V. Reprinted with permission from Ref. [118]. Copyright 2018, Springer Nature. SEM image (h), deconvoluted XPS scans (i,j) of Ni 2p and P 2p regions, respectively for the Ni2P/NF electrode. (k) LSV curve of overall hydrazine electrolysis driven by the Ni2P/NF(+,?) electrolyzer 1.0 mol L?1 KOH/0.5 mol L?1 N2H4 at 5 mV s-1, (l) The amount of theoretically measured and experimentally analyzed H2 versus the time for the Ni2P/NF electrode. Reprinted with permission from Ref. [279]. Copyright 2017, WILEY-VCH. (m?p) SEM, TEM, HR-TEM, and HAADF-STEM images as well as related elemental mapping profiles displaying the typical morphologies of nano-structured Cu1Ni2-N/CFC composite. (q) Polarization spectra of Cu1Ni2-N/CFC electrode for HER, OER, and HzOR. (r) Polarization curves of overall hydrazine electrolysis and OWS in a 1.0 mol L?1 KOH with and without 0.5 mol L?1 N2H4 at 5 mV s-1. (s) Long-time stability signals of OWS and overall hydrazine electrolysis in 1.0 mol L?1 KOH and 1.0 mol L?1 KOH/0.5 mol L?1 N2H4 at 10 mA cm-2. (t1?t3) Proposed models, calculated total and partial electronic DOS for Cu4N-Ni3N, Cu4N, and Ni3N compounds, respectively. Reprinted with permission from Ref. [33]. Copyright 2019, WILEY-VCH.
Fig. 27. (a) Synthesis procedure of porous Ni(Cu) CNP electrode. SEM (b) and HR-TEM (c) images, Cdl/curves (d), normalized LSV polarization curves (e) for HER catalysis. (f) LSV curves ofNi(Cu) CNPs electrode before and after 2000 CV cycles in 1.0 mol L?1 KOH/0.5 mol L?1 N2H4 electrolyte. Inset-(f) displays the corresponding Nyquist plots before and after 2000 cycles. (g) Electrocatalytic performances of Ni(Cu) CNPs(+,?)-based two-electrode electrolyzer boosting electro-merged HzOR/HER and OER/HER synergistic electrolysis in 1.0 mol L?1 KOH/0.5 mol L?1 N2H4 and 1.0 mol L?1 KOH electrolyte solutions. (h) Quantity of theoretically and experimentally measured H2. Inset-(h) presents the GC results of the gas generated by through synergistic electrolysis. Reprinted with permission from Ref. [98]. Copyright 2020, The Royal Society of Chemistry. (i) LSV curves of Ni(Cu)@NiFeP/NM electrode for HER and HzOR. (j) Comparative LSV curves of HzOR/HER and OER/HER synergistic electrolysis processes operated by the Ni(Cu)@NiFeP/NM(+,?) electrolyzer in 1.0 mol L?1 KOH/0.5 mol L?1 N2H4 and 1.0 mol L?1 KOH at 5 mV s-1. (k) i-t experiments of integrated Ni(Cu)@NiFeP/NM(+,?) cell for 12 h under intermittent electrolysis at 100 mA cm-2. (l) Theoretically calculated and experimentally analyzed H2 quantity. Reprinted with permission from Ref. [145]. Copyright 2019, Elsevier. Magnified SEM image (m,n), HR-TEM (o) images of Ni12P5/Ni-Pi/NF. (p) CV curves of Ni12P5/Ni-Pi/NF at different scan rates. Inset-(p) illustrates the analyzed Cdl for the Ni12P5/Ni-Pi/NF electrode. (q) LSV curves of bare NF, Pt/C/NF, and Ni12P5/Ni-Pi/NF for HER catalysis in a 1.0 mol L?1 KOH. (r) LSV curves of bare NF, RuO2/NF, and Ni12P5/Ni-Pi/NF for UOR in 1.0 mol L?1 KOH/0.5 mol L?1 CO(NH2)2. (s) LSV curves of Ni12P5/Ni-Pi/NF(+,?) electrolyzer in 1.0 mol L?1 mol L?1 KOH and 1.0 mol L?1 KOH/0.5 mol L?1 CO(NH2)2. (t) Comparative LSV profiles of NF(+,?)-, RuO2/NF(+,?)-, and Ni12P5/Ni-Pi/NF(+,?)-based electrolyzer in 1.0 mol L?1 KOH/0.5 mol L?1 CO(NH2)2. (u) i-t curve of Ni12P5/Ni-Pi/NF(+,?) electrolyzer at 500 mA cm-2 for 6 h. Reprinted with permission from Ref. [303]. Copyright 2020, American Chemical Society.\
Electrode/ electrocatalyst | Supporting electrolyte | Driving cell potential (V)/ current density (mA cm-2) | FE of H2 (%) | Durability | Ref. |
---|---|---|---|---|---|
D-MoP/rGO | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.74@100 | 100 | a stable 12 h of continuous operation | [ |
CC@WO3/Ru-450 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.025@10 | — | revealed a little activity attenuation over 10 electrolysis | [ |
1.0 mol L‒1 PBS/0.5 mol L‒1 N2H4 | 0.137@10 | — | — | ||
Co3O4/Co | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.19@100 | 100 | after 1000 CV cycles, the LSV curves show a negligible difference | [ |
Ni-C HNSA | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.14@50 | 100 | the current density was kept at ≈ 10 mA cm-2 for at least 25 h | [ |
(Ni0.6Co0.4)2P | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.228@10 | > 99 | — | [ |
Cu1Pd3/C | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.505@10 | — | good exceptional endurance over 5 h | [ |
Pt-Rhene | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.28@100 | ≈ 100 | no significant decay at 10 mA cm-2 for 50 h | [ |
Au1Pt8 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | ~0.172@10 | ― | yremendous stability over 10 h | [ |
Rh/RhOx-500 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.068@10 | 100 | a 32 mV increment in the potential after continuous catalysis for 40 h | [ |
1.0 mol L‒1 PBS/0.3 mol L‒1 N2H4 | 0.268@10 | — | — | ||
0.5 mol L‒1 H2SO4/0.3 mol L‒1 N2H4 | 0.348@10 | — | — | ||
Ni/β-Ni(OH)2 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.16/0.24@10 | 92 | maintained a steady cell voltage over 40 h | [ |
FeWO4-WO3 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.249/100 | — | operated stably for 100 h at 100 mA cm-2 | [ |
CoSe2 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.164@10 | 98.3 | 14 h of stable H2 production | [ |
FeCo-Ni2P@ MIL-FeCoNi | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.4@1000 | 100 | maintained the large current density of 500 mA cm-2 for 1000 h | [ |
RuP2 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.023@10 1.0@522 | 99.5 | no current density decay over 20 h electrolysis at a cell voltage of 23 mV | [ |
Co/BNC | 1.0 mol L‒1 KOH/0. 1 mol L‒1 N2H4 | 0.774@200 | 94 | maintained the cell voltage of 0.5 V with acceptable stability during the continuous test for 15 h | [ |
Rh2P uNSs | 0.5 mol L‒1 H2SO4/50 mmol L‒1 N2H4 | 0.377@10 | — | the cell current decreased to 90.34 % after 40 h of electrolysis | [ |
Ce-Ni3N/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.671@400 | — | the HzOR/HER system revealed long-term durability at 400 mA cm-2 100 h continuous test | [ |
Ru-Cu2O/CF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.0174@10 | — | the current density was almost constant before and after the 18 h stability test | [ |
PW-Co3N NWA/NF | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.607@200 | 96 | maintained 50 mA cm-2 with acceptable stability over 20 h | [ |
NiRh0.016-BDC | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.06@10 | 100 | robust stability with no activity change over 48 h at 10 mA cm-2 | [ |
N-mRu/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.023@10 0.184@100 | 100 | small voltage decay at 10 mA cm-2 after 25 h | [ |
CC@WS2/Ru-450 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.0154/10 | 100 | negligible deactivation over 100 h at 10 mA cm-2 | [ |
NiCo-MoNi4/NF | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.63@250 | 100 | 80% activity retention over 10 h | [ |
MoNi@NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.54@1000 | 100 | the activity was kept above 100 mA cm-2 for 100 h | [ |
Co(OH)2/MoS2/CC | 1.0 mol L‒1 KOH/0.4 mol L‒1 N2H4 | 0.271@100 | — | performed outstanding long-term stability for 12 h electrolysis | [ |
Fe/F-Ni2P@NC | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.571@1000 | 100 | remained above 100 mA cm-2 for 100 h | [ |
S-CoNS@CuPD | 3.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.054@10 | — | — | [ |
V-Ni3N NS | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.265@50 | — | sustained a high current density rate for 10 h | [ |
0.2-NiSe/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.310/10 | 97.8 | very slight increase in potential after 30 h | [ |
Ru-FeP4/IF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.90@1000 | 100 | negligible current decay after 80 h continuous operation at 100 mA cm-2 | [ |
CoSe2/MoSe2 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.16@1 0.85@10 | — | — | [ |
CoxP@Co3O4 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 1.0@948 | — | a slight difference in the polarization curve after 1000 cycles | [ |
Ni2P-HNTs/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.152@50 | — | a stable activity over 14 h of continuous electrolysis | [ |
N-Ni1Co3Mn0.4O/NF | 1.0 mol L‒1 KOH/0.5 M N2H4 | 0.272@100 | — | not much change in activity after 20 h of electrolysis | [ |
RhRu0.5 | 1.0 mol L‒1 KOH/1.0 mol L‒1 N2H4 | 0.054@100 0.6@853 | 94.1 | stable operation at 100 mA cm-2 for 80 h with little irreversible degradation | [ |
CuxSe/CF | 1.0 mol L‒1 KOH/0.2 mol L‒1 N2H4 | 0.49@25 | — | — | [ |
a-RhPb NFs | 1.0 mol L‒1 KOH/0. 1 mol L‒1 N2H4 | 0.095@10 0.321@100 | 100 | the voltage could be maintained stable during the 20 h test | [ |
Table 4 Summary for the anodic electrodes/electrocatalysts presented for electro-integrated HzOR/HER synergistic electrolysis to boost the co-generation of H2 gas and valuable products.
Electrode/ electrocatalyst | Supporting electrolyte | Driving cell potential (V)/ current density (mA cm-2) | FE of H2 (%) | Durability | Ref. |
---|---|---|---|---|---|
D-MoP/rGO | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.74@100 | 100 | a stable 12 h of continuous operation | [ |
CC@WO3/Ru-450 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.025@10 | — | revealed a little activity attenuation over 10 electrolysis | [ |
1.0 mol L‒1 PBS/0.5 mol L‒1 N2H4 | 0.137@10 | — | — | ||
Co3O4/Co | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.19@100 | 100 | after 1000 CV cycles, the LSV curves show a negligible difference | [ |
Ni-C HNSA | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.14@50 | 100 | the current density was kept at ≈ 10 mA cm-2 for at least 25 h | [ |
(Ni0.6Co0.4)2P | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.228@10 | > 99 | — | [ |
Cu1Pd3/C | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.505@10 | — | good exceptional endurance over 5 h | [ |
Pt-Rhene | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.28@100 | ≈ 100 | no significant decay at 10 mA cm-2 for 50 h | [ |
Au1Pt8 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | ~0.172@10 | ― | yremendous stability over 10 h | [ |
Rh/RhOx-500 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.068@10 | 100 | a 32 mV increment in the potential after continuous catalysis for 40 h | [ |
1.0 mol L‒1 PBS/0.3 mol L‒1 N2H4 | 0.268@10 | — | — | ||
0.5 mol L‒1 H2SO4/0.3 mol L‒1 N2H4 | 0.348@10 | — | — | ||
Ni/β-Ni(OH)2 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.16/0.24@10 | 92 | maintained a steady cell voltage over 40 h | [ |
FeWO4-WO3 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.249/100 | — | operated stably for 100 h at 100 mA cm-2 | [ |
CoSe2 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.164@10 | 98.3 | 14 h of stable H2 production | [ |
FeCo-Ni2P@ MIL-FeCoNi | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.4@1000 | 100 | maintained the large current density of 500 mA cm-2 for 1000 h | [ |
RuP2 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.023@10 1.0@522 | 99.5 | no current density decay over 20 h electrolysis at a cell voltage of 23 mV | [ |
Co/BNC | 1.0 mol L‒1 KOH/0. 1 mol L‒1 N2H4 | 0.774@200 | 94 | maintained the cell voltage of 0.5 V with acceptable stability during the continuous test for 15 h | [ |
Rh2P uNSs | 0.5 mol L‒1 H2SO4/50 mmol L‒1 N2H4 | 0.377@10 | — | the cell current decreased to 90.34 % after 40 h of electrolysis | [ |
Ce-Ni3N/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.671@400 | — | the HzOR/HER system revealed long-term durability at 400 mA cm-2 100 h continuous test | [ |
Ru-Cu2O/CF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.0174@10 | — | the current density was almost constant before and after the 18 h stability test | [ |
PW-Co3N NWA/NF | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.607@200 | 96 | maintained 50 mA cm-2 with acceptable stability over 20 h | [ |
NiRh0.016-BDC | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 0.06@10 | 100 | robust stability with no activity change over 48 h at 10 mA cm-2 | [ |
N-mRu/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.023@10 0.184@100 | 100 | small voltage decay at 10 mA cm-2 after 25 h | [ |
CC@WS2/Ru-450 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.0154/10 | 100 | negligible deactivation over 100 h at 10 mA cm-2 | [ |
NiCo-MoNi4/NF | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.63@250 | 100 | 80% activity retention over 10 h | [ |
MoNi@NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.54@1000 | 100 | the activity was kept above 100 mA cm-2 for 100 h | [ |
Co(OH)2/MoS2/CC | 1.0 mol L‒1 KOH/0.4 mol L‒1 N2H4 | 0.271@100 | — | performed outstanding long-term stability for 12 h electrolysis | [ |
Fe/F-Ni2P@NC | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.571@1000 | 100 | remained above 100 mA cm-2 for 100 h | [ |
S-CoNS@CuPD | 3.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.054@10 | — | — | [ |
V-Ni3N NS | 1.0 mol L‒1 KOH/0.1 mol L‒1 N2H4 | 0.265@50 | — | sustained a high current density rate for 10 h | [ |
0.2-NiSe/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.310/10 | 97.8 | very slight increase in potential after 30 h | [ |
Ru-FeP4/IF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.90@1000 | 100 | negligible current decay after 80 h continuous operation at 100 mA cm-2 | [ |
CoSe2/MoSe2 | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.16@1 0.85@10 | — | — | [ |
CoxP@Co3O4 | 1.0 mol L‒1 KOH/0.3 mol L‒1 N2H4 | 1.0@948 | — | a slight difference in the polarization curve after 1000 cycles | [ |
Ni2P-HNTs/NF | 1.0 mol L‒1 KOH/0.5 mol L‒1 N2H4 | 0.152@50 | — | a stable activity over 14 h of continuous electrolysis | [ |
N-Ni1Co3Mn0.4O/NF | 1.0 mol L‒1 KOH/0.5 M N2H4 | 0.272@100 | — | not much change in activity after 20 h of electrolysis | [ |
RhRu0.5 | 1.0 mol L‒1 KOH/1.0 mol L‒1 N2H4 | 0.054@100 0.6@853 | 94.1 | stable operation at 100 mA cm-2 for 80 h with little irreversible degradation | [ |
CuxSe/CF | 1.0 mol L‒1 KOH/0.2 mol L‒1 N2H4 | 0.49@25 | — | — | [ |
a-RhPb NFs | 1.0 mol L‒1 KOH/0. 1 mol L‒1 N2H4 | 0.095@10 0.321@100 | 100 | the voltage could be maintained stable during the 20 h test | [ |
Fig. 28. (a) In-situ Raman analyses of UOR process catalyzed by the NCVS-3 catalyst at different working voltages of 1.40?1.80 V vs. RHE. (b,c) in-situ mass spectrometry isotope tracing measurements for UOR catalysis by NCVS-3 catalyst in 1.0 mol L?1 KOH with 0.33 mol L?1 CO(NH2)2 [CO(14NH2)2] and 0.33 mol L?1 CO(NH2)2 [CO(14NH2)2/CO(15NH2)2 = 4:1], respectively. (d) Evaluated partial DOS for the S 3p and Ni 3d orbitals. Reprinted with permission from Ref. [28]. Copyright 2022, American Chemical Society. (e) Preparation strategy of VTe2@ZnFeTe/NF nanosheet frameworks. SEM image (f), HR-TEM images (g,h) of VTe2@ZnFeTe/NF nanosheets. (i) LSV profiles of VTe2@ZnFeTe/NF(+,-) electrolyzer for the OWS and overall urea electrolysis. (j) Calculated DOS for VTe2, ZnFeTe, and VTe2@ZnFeTe compounds. Reprinted with permission from Ref. [311]. Copyright 2023, Elsevier.
Fig. 29. (a) A scheme for the typical synthesis of RhSA-S-Co3O4 with high-loading RhSA sites. (b) TEM image of RhSA-S-Co3O4. Insets-(b) shows the surface (left) and HR-TEM image (right). (c) Aberration-corrected TEM image of RhSA-S-Co3O4, in which the green circles display the RhSA sites stabilized on S-Co3O4 substrate. (d) Estimated tensile strain values on the surface of P-Co3O4, S-Co3O4, and RhSA-S-Co3O4 complexes obtained from their respective aberration-corrected TEM images. (e) Wavelet transform-EXAFS scan of RhSA-S-Co3O4 and Rh foil at the Rh K-edge. (f) Migration energy barriers of RhSA on the surface of S-Co3O4 (red line) and P-Co3O4 (cyan line) moving from primary to final state and the formation energy values of RhSA-S-Co3O4 (red bar) and RhSA-P-Co3O4 (cyan bar). (g,h) comparative LSV curves of RhSA-S-Co3O4 electrocatalyst for OER and UOR carried out from positive to negative potential direction in 1.0 mol L?1 KOH/1.0 mol L?1 KOH + 0.5 mol L?1 CO(NH2)2 and 0.5 mol L?1 H2SO4/0.5 mol L?1 H2SO4+0.5 mol L?1 CO(NH2)2, respectively. (i) Adsorption energy of urea molecules on S-Co3O4 and RhSA-S-Co3O4 compounds. (j) Calculated p-band center of S-Co3O4 and RhSA-S-Co3O4 catalyst. (k) Reaction free energy profiles of UOR catalysis on the surface of S-Co3O4 and RhSA-S-Co3O4. Inset-(k) illustrates the reaction intermediates adsorbed on RhSA-S-Co3O4. (l) Polarization curves of overall urea electrolysis in 1.0 mol L?1 KOH/0.5 mol L?1 CO(NH2)2 and OWS in a 1.0 mol L?1 KOH using a bifunctional RhSA-S-Co3O4 electrocatalyst. (m) i-t stability test of RhSA-S-Co3O4(+,-) urea electrolyzer in alkaline conditions at 100 mA cm-2. Inset-(m) shows the FE of H2 generation through electro-paired UOR/HER synergistic electrolysis at a cell potential of 1.8 V along with the LSV curves before and after stability test. Reprinted with permission from Ref. [314]. Copyright 2021, The Royal Society of Chemistry.
Fig. 30. (a) Representative scheme for the preparation of CoP@PNC/PCWF. (b) SEM, TEM (c), and HR-TEM (d) images of CoP@PNC/PCWF. (e) Polarization spectra of CoP@PNC/PCWF for OER and UOR at 5 mV s-1 and (f) LSV curves of Pt/C(?)//CoP@PNC/PCWF(+) for overall urea electrocatalysis in 1.0 mol L?1 KOH/0.5 mol L?1 CO(NH2)2 compared with the conventional OWS in a 1.0 mol L?1 KOH. Reprinted with permission from Ref. [322]. Copyright 2022, WILEY-VCH. (g) Typical fabrication procedure of P-CoNi2S4YSSs, (h,i) TEM and HR-TEM images, respectively. (h?h2) fast Fourier transform images. (j) Polarization profiles of P-CoNi2S4YSSs for overall urea electrolysis and OWS. Reprinted with permission from Ref. [321]. Copyright 2021, WILEY-VCH. (k,l) SEM micrographs of O-NiMoP/NF electrode, (m) polarization curves of O-NiMoP/NF electrodes for electro-coupled HER//UOR and HER//OER synergistic electrolysis, (n) comparison of the working cell potential for the HER//UOR and HER//OER synergistic processes at different current densities, (o) calculated PDOS of Ni, Mo, P, and O within the O-NiMoP nanohybrid. Reprinted with permission from Ref. [96]. Copyright 2021, WILEY-VCH. (p) A systematic diagram for the formation of CoMn/CoMn2O4 Schottky electrode, (q) SEM, (r,s) TEM and HR-TEM images, respectively, (t) LSV curves of CoMn/CoMn2O4 electrode for HER, UOR, and OER in an alkaline medium, (u) polarization profiles of full urea electrolysis and OWS directed by the CoMn/CoMn2O4(+,?) electrolyzer system, (v) long-term stability testing of full urea electrolysis catalyzed by the CoMn/CoMn2O4(+,?) electrolyzer at a cell voltage of 1.68 V, and (w) adsorption energies of H2O, CO2, H2, N2, and CO(NH2)2 on CoMn2O4 and CoMn/CoMn2O4 exposed surfaces. Reprinted with permission from Ref. [97]. Copyright 2020, WILEY-VCH.
Electrode/ electrocatalyst | Supporting electrolyte | Support | Driving cell potential (V)/ current density (mA cm-2) | Durability | Ref. |
---|---|---|---|---|---|
Ni3N/Mo2N | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.47@50 | negligible change for continuous electrolysis over 50 h | [ |
NiCoPx@NiFeCo-MOF/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.54@100 | maintained steady electrolysis performance over 42 h | [ |
NiCo-ZLDH/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.948@100 | — | [ |
V-Ni(OH)2 | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.50@10 | — | [ |
CC-Ni/NiO@NCS | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.475@10 | remarkable prolonged stability over 63 h | [ |
Cu-doped Ni3 S2/NF | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.57@10 | the LSV curves before and after 20 000 cycles were nearly superposed | [ |
Ni3 Se2@CuSex/CF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | Cu foam | 1.49@100 | current density maintained unchanged even after 3000 cycles | [ |
W-NiS2/MoO2@CC | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | CC | 1.372@10 | ignorable degradation of current density for 24 h at 100 mA cm-2 | [ |
P-NiFe@CF | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | carbon felt | 1.37@10 | remained stable for 8 h of operation at 1.65 V | [ |
NF/P-NiMoO4-x | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.48@10 | 90.9% activity retention after 50 h | [ |
Cu-Ni3 S2@ NiFe LDH-200 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.413@10 | could electro-catalyze UOR/HER stably at different potentials | [ |
NF/CNNH-20 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.43@10 | nearly no variation of cell potential at 20 mA cm cm-2 after 20 h continuous operation | [ |
S-Co2P@Ni2P | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | Ti mesh | 1.43@10 | maintained 86% of the initial current density after 20 h-chronoamperometric test | [ |
CoxMoyCH | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.4@10 | negligible property degradation after continuous operation for 40 h | [ |
Co3O4@NC/NiO | 1.0 mol L-1 KOH/0.3 mol L-1 CO(NH2)2 | NF | 1.31@100 1.49@100 | insignificant degradation of the activity over 212 h at 100 mA cm-2 | [ |
NiMoO4-200 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.38@10 | maintained at 100 mA cm-2 at least for 24 h | [ |
NiCoP | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.42@10 | stable cell voltage of 1.5 V for 30 h at 20 mA cm-2 | [ |
CoS2-MoS2 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.29@10 | the current could be maintained at 10 mA cm-2 for 60 h without degradation | [ |
Ce-Ni3N@CC | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.34@10 | current density could be maintained after 15 h at 40 mA cm-2 | [ |
NiO-NiPi | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.67@250 | 9.8% increase in the applied voltage after 25 h continuous electrolysis at 50 mA cm-2 | [ |
Ni3 S2-NiMoO4/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.73@1000 | negligible activity decay for 120 h at 500 mA cm-2 | [ |
Ni3 S2/Ni/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.46@100 | it could maintain work at 100 mA cm-2 for 60 h with the voltage only reduced by 70 mV | [ |
Ni3 S2-Ni3P/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.65@100 | after 16 h of testing, the current density was only reduced by 3% | [ |
MoS2/Ni3S2 | 1.0 mol L-1 NaOH/0.33 mol L-1 CO(NH2)2 | NF | 1.45@20 | presented a slight decrease in the cell potential over 20 h electrolysis at 20 mA cm-2 | [ |
Ni2P/MoO2/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.35@10 | the electrocatalytic activity could be maintained for at least 40 h | [ |
PBA@MOF-Ni/Se | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.49@10 | could maintain 1.49 V for 10 h at 10 mA cm-2 with almost no degradation | [ |
Mo-NiCoP@NiCoP /NixCoyH2PO2 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.348 V@10 | — | [ |
CA-Ni5P4@NiOx | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.53@10 | no appreciable potential change over 10 h at 100 mA cm-2 | [ |
NiF3/Ni2P@CC-2 | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | CC | 1.83@50 | could work continuously for 10 h | [ |
NiS/Ni3 S4/GCW | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | naturalwood slice | 1.44@10 | low voltage increment after continuous operation for 50 h at 10 mA cm-2 | [ |
Ni2P/Ni0.96S/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.453@100 | the current density of the cell remained close to 90% after 20 h of urea electrolysis | [ |
P-Ni@CoMoO4/CF | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | Cu foam | 1.50@100 | could operate stably at 100 mA cm-2 for more than 12 h | [ |
Ce-Ni2P/NF | 1.0 mol L-1 KOH/0.3 mol L-1 CO(NH2)2 | NF | 1.78@100 | — | [ |
FeNi-MOF NSs | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | Ti mesh | 1.431@10 | 93.6% of the initial current density was obtained after 10 h | [ |
NiFe LDH/NF | 1.0 mol L-1 K/0.33 mol L-1 CO(NH2)2 | NF | 1.46@10 | inappreciable decrease of the cell potential after 20 h of electrolysis | [ |
Ni(OH)2/NiO-C/WO3 HAs | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | carbon paper | 1.37@10 | current density remained unchangeable over 60 h | [ |
Ni2P/N-Cnanorods-2h | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | glassy carbon | 1.41@10 | 86.7% retention rate could be realized after 12 h | [ |
Fe3O4 | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.55@10 | 72% retention rate after 48 h operation at 1.61 V | [ |
α-MoS2/CoS/Co0.85Se | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.42@10 | negligible change after 55 h at 10 mA cm-2 | [ |
Co3V@C/Co2VO4 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.37@10 | maintained 97.5% potential after 100 h stability test at 100 mA cm-2 | [ |
Co3Mo1 S | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.5@10 | after 24 h of continuous stability testing, the retention rate was about 69.9% | [ |
FexCo2-xP | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.42@10 | — | [ |
Sn(2)-CoS2 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.45@10 | exhibited high stability at 10 mA cm-2 for 95 h | [ |
Table 5 Developed electrodes/electrocatalysts for catalyzing electro-paired UOR/HER synergistic electrolysis to promote the generation of H2.
Electrode/ electrocatalyst | Supporting electrolyte | Support | Driving cell potential (V)/ current density (mA cm-2) | Durability | Ref. |
---|---|---|---|---|---|
Ni3N/Mo2N | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.47@50 | negligible change for continuous electrolysis over 50 h | [ |
NiCoPx@NiFeCo-MOF/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.54@100 | maintained steady electrolysis performance over 42 h | [ |
NiCo-ZLDH/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.948@100 | — | [ |
V-Ni(OH)2 | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.50@10 | — | [ |
CC-Ni/NiO@NCS | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.475@10 | remarkable prolonged stability over 63 h | [ |
Cu-doped Ni3 S2/NF | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.57@10 | the LSV curves before and after 20 000 cycles were nearly superposed | [ |
Ni3 Se2@CuSex/CF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | Cu foam | 1.49@100 | current density maintained unchanged even after 3000 cycles | [ |
W-NiS2/MoO2@CC | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | CC | 1.372@10 | ignorable degradation of current density for 24 h at 100 mA cm-2 | [ |
P-NiFe@CF | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | carbon felt | 1.37@10 | remained stable for 8 h of operation at 1.65 V | [ |
NF/P-NiMoO4-x | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.48@10 | 90.9% activity retention after 50 h | [ |
Cu-Ni3 S2@ NiFe LDH-200 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.413@10 | could electro-catalyze UOR/HER stably at different potentials | [ |
NF/CNNH-20 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.43@10 | nearly no variation of cell potential at 20 mA cm cm-2 after 20 h continuous operation | [ |
S-Co2P@Ni2P | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | Ti mesh | 1.43@10 | maintained 86% of the initial current density after 20 h-chronoamperometric test | [ |
CoxMoyCH | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.4@10 | negligible property degradation after continuous operation for 40 h | [ |
Co3O4@NC/NiO | 1.0 mol L-1 KOH/0.3 mol L-1 CO(NH2)2 | NF | 1.31@100 1.49@100 | insignificant degradation of the activity over 212 h at 100 mA cm-2 | [ |
NiMoO4-200 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.38@10 | maintained at 100 mA cm-2 at least for 24 h | [ |
NiCoP | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.42@10 | stable cell voltage of 1.5 V for 30 h at 20 mA cm-2 | [ |
CoS2-MoS2 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.29@10 | the current could be maintained at 10 mA cm-2 for 60 h without degradation | [ |
Ce-Ni3N@CC | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.34@10 | current density could be maintained after 15 h at 40 mA cm-2 | [ |
NiO-NiPi | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.67@250 | 9.8% increase in the applied voltage after 25 h continuous electrolysis at 50 mA cm-2 | [ |
Ni3 S2-NiMoO4/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.73@1000 | negligible activity decay for 120 h at 500 mA cm-2 | [ |
Ni3 S2/Ni/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.46@100 | it could maintain work at 100 mA cm-2 for 60 h with the voltage only reduced by 70 mV | [ |
Ni3 S2-Ni3P/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.65@100 | after 16 h of testing, the current density was only reduced by 3% | [ |
MoS2/Ni3S2 | 1.0 mol L-1 NaOH/0.33 mol L-1 CO(NH2)2 | NF | 1.45@20 | presented a slight decrease in the cell potential over 20 h electrolysis at 20 mA cm-2 | [ |
Ni2P/MoO2/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.35@10 | the electrocatalytic activity could be maintained for at least 40 h | [ |
PBA@MOF-Ni/Se | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.49@10 | could maintain 1.49 V for 10 h at 10 mA cm-2 with almost no degradation | [ |
Mo-NiCoP@NiCoP /NixCoyH2PO2 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.348 V@10 | — | [ |
CA-Ni5P4@NiOx | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.53@10 | no appreciable potential change over 10 h at 100 mA cm-2 | [ |
NiF3/Ni2P@CC-2 | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | CC | 1.83@50 | could work continuously for 10 h | [ |
NiS/Ni3 S4/GCW | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | naturalwood slice | 1.44@10 | low voltage increment after continuous operation for 50 h at 10 mA cm-2 | [ |
Ni2P/Ni0.96S/NF | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.453@100 | the current density of the cell remained close to 90% after 20 h of urea electrolysis | [ |
P-Ni@CoMoO4/CF | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | Cu foam | 1.50@100 | could operate stably at 100 mA cm-2 for more than 12 h | [ |
Ce-Ni2P/NF | 1.0 mol L-1 KOH/0.3 mol L-1 CO(NH2)2 | NF | 1.78@100 | — | [ |
FeNi-MOF NSs | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | Ti mesh | 1.431@10 | 93.6% of the initial current density was obtained after 10 h | [ |
NiFe LDH/NF | 1.0 mol L-1 K/0.33 mol L-1 CO(NH2)2 | NF | 1.46@10 | inappreciable decrease of the cell potential after 20 h of electrolysis | [ |
Ni(OH)2/NiO-C/WO3 HAs | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | carbon paper | 1.37@10 | current density remained unchangeable over 60 h | [ |
Ni2P/N-Cnanorods-2h | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | glassy carbon | 1.41@10 | 86.7% retention rate could be realized after 12 h | [ |
Fe3O4 | 1.0 mol L-1 KOH/0.33 mol L-1 CO(NH2)2 | NF | 1.55@10 | 72% retention rate after 48 h operation at 1.61 V | [ |
α-MoS2/CoS/Co0.85Se | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.42@10 | negligible change after 55 h at 10 mA cm-2 | [ |
Co3V@C/Co2VO4 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.37@10 | maintained 97.5% potential after 100 h stability test at 100 mA cm-2 | [ |
Co3Mo1 S | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.5@10 | after 24 h of continuous stability testing, the retention rate was about 69.9% | [ |
FexCo2-xP | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | NF | 1.42@10 | — | [ |
Sn(2)-CoS2 | 1.0 mol L-1 KOH/0.5 mol L-1 CO(NH2)2 | CC | 1.45@10 | exhibited high stability at 10 mA cm-2 for 95 h | [ |
Fig. 31. (a) An illustration for inserting S dopants into crystalline Pd NSA. (b,c) HR-TEM images of as-obtained a/c S-Pd NSA. (d) High-resolution XPS scans of Pd 3d for the a/c S-Pd NSA and Pd NSA nanomaterials. (e) Electrocatalytic activity of a/c S-Pd NSA/NF electrode for SOR and OER. (f) LSV curves of a/c S-Pd NSA/NF(+,?) two-electrode device in various electrolytes (1.0 mol L?1 KOH and 1.0 mol L?1 KOH/2 mol L?1 Na2 S). (g) Cell potentials needed to sustain different current densities for the coupled SOR/HER synergistic electrolysis and OWS electrolysis. (h,i) Experimental and theoretical values of generated H2 at the cathode and S powder yield at the anode during synergistic electrolysis, respectively. Reprinted with permission from Ref. [330]. Copyright 2023, WILEY-VCH. (j) TEM image, (k,l) HR-TEM images of CoNi@NGs nanocomposite, (m) PDOS of S(3p) and its C(2p) when the S was captured by the surface of pristine graphene, CoNi@Gs and CoNi@NGs. (n) LSV profiles of CoNi@NGs electrocatalyst for SOR and OER catalysis, (o) evolution rate and FF of H2 production catalyzed by CoNi@NGs electrocatalyst. (p) UV-Vis scans of 250 times diluted electrolyte samples based on the electrolytes in the inset photo. (q) in-situ UV-Vis tests of anodic electrolyte. (r) XRD pattern of S yield. Inset-(r) denotes the harvested S powder. Reprinted with permission from Ref. [332]. Copyright 2020, The Royal Society of Chemistry.
Fig. 32. SEM image (a), TEM image (b), AFM scan (c) of as-prepared Ni2P-UNMs nanocomposite. (d) LSV curves of Ni2P-UNMs/NF electrode in a 1.0 mol L?1 KOH electrolyte without and with 0.125 mol L?1 benzylamine. (e) Yield rate of benzylamine and related FE of BOR catalyzed by the Ni2P-UNMs/NF electrode under various potentials. (f) LSV curves of Ni2P-UNMs/NF electrode in a 1.0 mol L?1 KOH solution with and without 0.125 mol L?1 benzylamine. (g) LSV curves of Ni2P-UNMs/NF(+,?) electrolyzer in a 1.0 mol L?1 KOH electrolyte in the absence and presence of 0.125 mol L?1 benzylamine. (h) Faradic efficiencies of HER and BOR electrolysis. (i) Cycle-dependent Faradic efficiencies of HER and BOR. Reprinted with permission from Ref. [349]. Copyright 2020, Elsevier. (j) LSV signals of NiSe electrode at 5 mV s-1 in a 1.0 mol L?1 KOH with and without 1.0 mmol L?1 benzylamine. (k) i-t curve of NiSe at a potential of 1.40 V vs. RHE with an intermittent insertion of 1.0 mmol L?1 benzylamine. (l) Cycle-dependent yield and FE of benzylamine, (m) voltage-dependent in-situ Raman characterizations of NiSe anode performed without benzylamine (left) and with benzylamine (right). (n) LSV curves of integrated NiSe(+)//CoP(?) electrolyzer cell in a 1.0 mol L?1 KOH with and without 1.0 mmol L?1 benzylamine. Inset-(n) illustrates the required cell potential to realize the benchmark current density. (o) Cycle-dependent FE of the HWE system for both H2 and benzonitrile co-production driven by the established NiSe(+)//CoP(?) electrolyzer. Reprinted with permission from Ref. [350]. Copyright 2018, WILEY-VCH.
Fig. 33. Opportunities for and perspectives on future research directions to push forward the development of small molecules oxidation reaction synergizing HWE for co-generating energy-saving H2 gas and value-added chemicals.
Fig. 34. An overview of earth-abundant transition metal electrodes/electrocatalysts reported for various anodic electrooxidation reactions of organic/biomass substrates-based synergistic electrocatalysis.
|
[1] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[2] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[3] | 安国庆, 张晓伟, 张灿阳, 高鸿毅, 刘斯奇, 秦耕, 齐辉, Jitti Kasemchainan, 张建伟, 王戈. 金属有机骨架基绿色催化剂在醇氧化反应中的研究应用[J]. 催化学报, 2023, 50(7): 126-174. |
[4] | 刘诗瑶, 巩玉同, 杨晓, 张楠楠, 刘会斌, 梁长海, 陈霄. 具有富电子镍位点的耐酸金属间化合物CaNi2Si2催化剂用于不饱和有机酸酐/酸的水相加氢[J]. 催化学报, 2023, 50(7): 260-272. |
[5] | 张昊, 苏亚琼, Nikolay Kosinov, Emiel J. M. Hensen. Mo掺杂CeO2催化剂上甲烷的无氧偶联: 表面和气相过程[J]. 催化学报, 2023, 49(6): 68-80. |
[6] | 李显泉, 庞纪峰, 赵于嘉, 吴鹏飞, 于文广, 颜佩芳, 苏扬, 郑明远. Cu-MFI催化剂上Cuδ+催化乙醇脱氢制乙醛[J]. 催化学报, 2023, 49(6): 91-101. |
[7] | 杜乘风, 胡尔海, 余泓, 颜清宇. 二维电催化剂的局域电子调控策略[J]. 催化学报, 2023, 48(5): 1-14. |
[8] | 张文静, 李静, 魏子栋. 碳基氧还原电催化剂: 机理研究和多孔结构[J]. 催化学报, 2023, 48(5): 15-31. |
[9] | 董兴宗, 刘广业, 陈兆安, 张权, 徐云鹏, 刘中民. 性能优异的Pd-[DBU][Cl]/AC无汞催化剂在乙炔氢氯化中的应用[J]. 催化学报, 2023, 46(3): 137-147. |
[10] | 张平, 陈浩, 陈林, 熊鹰, 孙子其, 杨浩宇, 付莹珂, 张亚萍, 廖婷, 李斐. 基于NiZn层状双金属氢氧化物制备高效电催化CO2还原的原子分散Ni-N-C催化剂[J]. 催化学报, 2023, 45(2): 152-161. |
[11] | 吴尧, 杨杰夫, 郑媚, 胡点轶, Teddy Salim, 汤碧珺, 刘政, 李述周. 直接化学气相沉积法制备二维钴铁氧体用于高效析氧反应[J]. 催化学报, 2023, 55(12): 265-277. |
[12] | 吴立清, 梁庆, 赵家仪, 朱娟, 贾宏男, 张伟, 蔡苹, 罗威. 铋掺杂的二氧化钌催化剂用于高效酸性水氧化[J]. 催化学报, 2023, 55(12): 182-190. |
[13] | 吴沛文, 邓畅, 刘锋, 朱昊男, 陈琳琳, 刘若禹, 朱文帅, 徐春明. 磁性可循环高熵金属氧化物催化剂用于活化氧气催化氧化脱硫[J]. 催化学报, 2023, 54(11): 238-249. |
[14] | 樊哲琛, 万浩, 余浩, 葛君杰. 用于氧还原电催化的Fe-M-N-C基双原子催化剂的研究进展[J]. 催化学报, 2023, 54(11): 56-87. |
[15] | 李航杰, 肖月华, 肖佳乐, 范凯, 李炳宽, 李晓龙, 王亮, 肖丰收. 镓改性的铜基疏水催化剂用于CO2选择性加氢制二甲醚的研究[J]. 催化学报, 2023, 54(11): 178-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||