催化学报 ›› 2023, Vol. 55: 20-43.DOI: 10.1016/S1872-2067(23)64553-X
孙阳a, Jan E. Szulejkoa, Ki-Hyun Kima,*(), Vanish Kumarb,*(
), 李小伟c,*(
)
收稿日期:
2023-08-13
接受日期:
2023-10-11
出版日期:
2023-12-18
发布日期:
2023-12-07
通讯作者:
*电子信箱:
Yang Suna, Jan E. Szulejkoa, Ki-Hyun Kima,*(), Vanish Kumarb,*(
), Xiaowei Lic,*(
)
Received:
2023-08-13
Accepted:
2023-10-11
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Prof. Ki-Hyun Kim was at Florida State University for an M.S. (1984‒1986) and at University of South Florida for a Ph.D. (1988‒1992). He was a Research Associate at Oak Ridge National Laboratory, USA (1992 to 1994). He moved to Sang Ji University, Korea in 1995 and then joined Sejong University in 1999. In 2014, he moved to the Department of Civil & Environmental Engineering at Hanyang University. His research areas cover the various aspects of research to incorporate “Air Quality & Environmental Engineering” into “Material Engineering” with emphasis on Metal-Organic Frameworks (MOFs). He was awarded as one of the top 10 National Star Faculties in Korea in 2006 and became an academician (Korean Academy of Science and Technology) in 2018. He has been recognized as ‘Highly Cited Researcher (HCR)’ in dual fields of ‘Environment & Ecology’ and ‘Engineering’ from Clarivate Analytics. He is serving as associate editor of ‘Environmental Research’, Sensors’, and ‘Critical Reviews in Environmental Science & Technology’. He has published more than 980 articles, many of which are in leading scientific journals including Chemical Society Reviews, Progress in Material Science, Progress in Energy and Combustion Science, Chem, Nano Energy, Coordination Chemistry Reviews, Applied Catalysis B, and Chemical Engineering Journal.摘要:
光催化还原是处理水溶液体系中六价铬(Cr(VI))的一种新方法. 层状铋(Bi)基材料具有增强的光捕获能力和可调的带隙能量, 被认为是一种光催化还原去除Cr(VI)的有效材料. 本文从修饰策略(如异质结、缺陷工程和掺杂)和工艺变量(如溶液pH和添加剂的类型/数量)等方面, 对用于光催化还原处理Cr(VI)的铋基材料的改进机制进行深入总结. 此外, 采用工业上用作关键指标的优值系数(FoM), 对各种铋基材料的性能进行评估. 结果发现, 平均粒径为5‒10 nm, 具有shuriken形状的BiVO4具有最高的FoM值(3.45×10-5 mol g-1 Wh-1), 且其光催化还原性能最好. 同时, 与其他非铋基催化剂相比, BiVO4的光催化还原Cr(VI)性能也具有很好的优势. 但是, 目前铋基催化剂成本较高, 且光催化还原过程能耗较大, 距离大规模实际应用还有一定的距离. 未来, 为实现铋基催化剂光催化还原处理含Cr(VI)废水的大规模应用, 应大幅度降低催化剂的生产成本, 并提高催化剂光子吸收效率从而进一步提高能源利用率.
孙阳, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, 李小伟. 铋基材料光催化还原水中六价铬的研究进展[J]. 催化学报, 2023, 55: 20-43.
Yang Sun, Jan E. Szulejko, Ki-Hyun Kim, Vanish Kumar, Xiaowei Li. Recent advances in the development of bismuth-based materials for the photocatalytic reduction of hexavalent chromium in water[J]. Chinese Journal of Catalysis, 2023, 55: 20-43.
Order | Year | Cr(VI) reduction/removal method | Material | Performance evaluation | Advantage | Disadvantage | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2010 | adsorption | lignocellulosic materials | Pith (Q = 262.89 mg g‒1) | simply operation Low cost | rapid saturation | [ | |||
2 | 2012 | electrocoagulation | Iron/Aluminum electrodes | — | simplicity of operation | high energy consumption loss of electrodes | [ | |||
photocatalytic reduction | organic matter | — | cost-effective environmental-friendly | unwanted byproducts | ||||||
Fe(III) photocatalysts + organic acids | ||||||||||
TiO2 photocatalysts + organic acid | ||||||||||
Cr(VI) reduction bacteria | aerobic Cr(VI) reducing bacteria | — | economical operation | long period for Cr(VI) treatment | ||||||
anaerobic Cr(VI) reducing bacteria | ||||||||||
fungi | ||||||||||
3 | 2016 | electrochemical method | carbon-based electrodes gold electrodes conducting polymers | — | high energy efficiency and rapid treatment | pH dependence anode passivation and sludge deposition on the electrodes | [ | |||
4 | 2016 | photocatalytic Cr(VI) reduction | MOFs semiconductor/MOFs hybrid photocatalyst conductor/MOFs hybrid photocatalyst | — | in situ production of reactive radicals less consumption of chemicals flexible modulation of MOFs | expensive cost for MOFs preparation potential MOFs structure collapse | [ | |||
5 | 2018 | biological methods | bacteria/fungi/algae/plants | — | eco-friendly and cost-effective | preparation of favorable environment; slow process | [ | |||
6 | 2019 | catalytic methods | catalysts + carboxylic acids (Cas) | — | fast kinetic; rapid operation ubiquitous presence of Cas in natural environments and effluents | possible generation of uncertain by-products hard to be employed | [ | |||
7 | 2019 | adsorption | activated carbon, Zero valent iron | — | cheap production | low affinity elimination of adsorbents | [ | |||
voagulation | FeCl3, FeSO4, Al2(SO4)3 | — | high performance | low efficiency additional consumption secondary pollutants | ||||||
electrochemical method | — | — | cost-effective rapid treatment | high energy consumption | ||||||
ion exchange | — | — | simple process and technology easy to be used with other techniques | highly dependent with pH low binding affinity due to the presence of free acids | ||||||
membrane separation | polyamide membranes | — | small required space high quality treated effluent low solid waste generation | generation of residual sludge amount, expensive energy use | ||||||
biological methods | — | — | eco-friendly cheap | biological sludge generation microorganisms management and maintenance | ||||||
fenton reaction | Fe + H2O2 | — | fast reaction | extra chemicals | ||||||
photocatalysis | — | — | green technology | uncertain byproducts | ||||||
8 | 2019 | bioremediation technology | biochar | chattim tree saw dust (Q = 333.33 mg g‒1) | high performance | tedious post treatments expensiveness of regeneration and material loss | [ | |||
microorganisms | — | low cost small risk of secondary pollution | long term | |||||||
plants | — | |||||||||
9 | 2020 | photocatalytic approach | photocatalysts | — | high efficiency low energy consumption | laboratory scale low throughput | [ | |||
10 | 2021 | bacterial reduction | bacteria | — | cost-effective | pH control and environmental maintenance | [ | |||
11 | 2021 | adsorption/ photocatalytic reduction | graphene-based materials | — | large surface area | material regeneration | [ | |||
12 | 2021 | photocatalytic technology | graphitic carbon nitride (g-C3N4) | — | solar energy utilization low cost | low efficiency | [ | |||
13 | 2021 | adsorption | carbon-based adsorbents | bermuda grass (Q = 403.2 mg g‒1) | simple operation High pH range | rapid saturation adsorbents collection and regeneration | [ | |||
membrane technology | filtration/osmosis | — | small space easy operation | high maintenance fee | ||||||
photocatalysis | TiO2 | — | rapid reduction | high electron/hole recombination rate | ||||||
electrochemical treatment | — | — | high energy efficiency | corrosion of electrode | ||||||
microbial treatment | — | — | simple operation economical operation | long period environment maintenance | ||||||
14 | 2021 | adsorption/ photocatalytic reduction | MOFs | — | flexible designing of MOFs | high cost | [ | |||
15 | 2021 | adsorption/ photocatalytic reduction | polysaccharide-based materials | — | biodegradability and biocompatibility | material preparation | [ | |||
16 | 2021 | electrochemical reduction method | — | — | versatility | anode passivation | [ | |||
17 | 2022 | photocatalytic method | photocatalysts | — | no sludge production | pH dependence | [ | |||
18 | 2022 | photo-reduction method | MOF-based photocatalyst | — | unique versatilities facile structural modulation | expensive | [ | |||
19 | 2022 | microbial immobilization technology | — | — | eco-friendly | complexity of the operation | [ | |||
20 | 2022 | adsorption | surface-modified silicas | silica modified with 1-methyl-3-(triethoxysilypropyl) imidazolium chloride (Q = 428 mg g‒1) | high performance | regeneration | [ | |||
21 | 2022 | photocatalytic method | MOFs-based photocatalysts | — | wide range of MOFs | laboratory scale | [ | |||
22 | 2022 | photocatalytic method | semiconductor heterojunctions | — | large amount of candidates | energy utilization efficiency | [ | |||
23 | 2023 | photocatalytic reduction | Bi-based photocatalysts | BiVO4 FoM = 3.45 × 10‒5 mol g‒1 Wh‒1 | abundance adjustable optical property high efficiency environment harmless | laboratory scale lack of cost/energy evaluation | this work |
Table 1 Comparison of advantages and disadvantages of various technologies for Cr removal from aquatic environments.
Order | Year | Cr(VI) reduction/removal method | Material | Performance evaluation | Advantage | Disadvantage | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2010 | adsorption | lignocellulosic materials | Pith (Q = 262.89 mg g‒1) | simply operation Low cost | rapid saturation | [ | |||
2 | 2012 | electrocoagulation | Iron/Aluminum electrodes | — | simplicity of operation | high energy consumption loss of electrodes | [ | |||
photocatalytic reduction | organic matter | — | cost-effective environmental-friendly | unwanted byproducts | ||||||
Fe(III) photocatalysts + organic acids | ||||||||||
TiO2 photocatalysts + organic acid | ||||||||||
Cr(VI) reduction bacteria | aerobic Cr(VI) reducing bacteria | — | economical operation | long period for Cr(VI) treatment | ||||||
anaerobic Cr(VI) reducing bacteria | ||||||||||
fungi | ||||||||||
3 | 2016 | electrochemical method | carbon-based electrodes gold electrodes conducting polymers | — | high energy efficiency and rapid treatment | pH dependence anode passivation and sludge deposition on the electrodes | [ | |||
4 | 2016 | photocatalytic Cr(VI) reduction | MOFs semiconductor/MOFs hybrid photocatalyst conductor/MOFs hybrid photocatalyst | — | in situ production of reactive radicals less consumption of chemicals flexible modulation of MOFs | expensive cost for MOFs preparation potential MOFs structure collapse | [ | |||
5 | 2018 | biological methods | bacteria/fungi/algae/plants | — | eco-friendly and cost-effective | preparation of favorable environment; slow process | [ | |||
6 | 2019 | catalytic methods | catalysts + carboxylic acids (Cas) | — | fast kinetic; rapid operation ubiquitous presence of Cas in natural environments and effluents | possible generation of uncertain by-products hard to be employed | [ | |||
7 | 2019 | adsorption | activated carbon, Zero valent iron | — | cheap production | low affinity elimination of adsorbents | [ | |||
voagulation | FeCl3, FeSO4, Al2(SO4)3 | — | high performance | low efficiency additional consumption secondary pollutants | ||||||
electrochemical method | — | — | cost-effective rapid treatment | high energy consumption | ||||||
ion exchange | — | — | simple process and technology easy to be used with other techniques | highly dependent with pH low binding affinity due to the presence of free acids | ||||||
membrane separation | polyamide membranes | — | small required space high quality treated effluent low solid waste generation | generation of residual sludge amount, expensive energy use | ||||||
biological methods | — | — | eco-friendly cheap | biological sludge generation microorganisms management and maintenance | ||||||
fenton reaction | Fe + H2O2 | — | fast reaction | extra chemicals | ||||||
photocatalysis | — | — | green technology | uncertain byproducts | ||||||
8 | 2019 | bioremediation technology | biochar | chattim tree saw dust (Q = 333.33 mg g‒1) | high performance | tedious post treatments expensiveness of regeneration and material loss | [ | |||
microorganisms | — | low cost small risk of secondary pollution | long term | |||||||
plants | — | |||||||||
9 | 2020 | photocatalytic approach | photocatalysts | — | high efficiency low energy consumption | laboratory scale low throughput | [ | |||
10 | 2021 | bacterial reduction | bacteria | — | cost-effective | pH control and environmental maintenance | [ | |||
11 | 2021 | adsorption/ photocatalytic reduction | graphene-based materials | — | large surface area | material regeneration | [ | |||
12 | 2021 | photocatalytic technology | graphitic carbon nitride (g-C3N4) | — | solar energy utilization low cost | low efficiency | [ | |||
13 | 2021 | adsorption | carbon-based adsorbents | bermuda grass (Q = 403.2 mg g‒1) | simple operation High pH range | rapid saturation adsorbents collection and regeneration | [ | |||
membrane technology | filtration/osmosis | — | small space easy operation | high maintenance fee | ||||||
photocatalysis | TiO2 | — | rapid reduction | high electron/hole recombination rate | ||||||
electrochemical treatment | — | — | high energy efficiency | corrosion of electrode | ||||||
microbial treatment | — | — | simple operation economical operation | long period environment maintenance | ||||||
14 | 2021 | adsorption/ photocatalytic reduction | MOFs | — | flexible designing of MOFs | high cost | [ | |||
15 | 2021 | adsorption/ photocatalytic reduction | polysaccharide-based materials | — | biodegradability and biocompatibility | material preparation | [ | |||
16 | 2021 | electrochemical reduction method | — | — | versatility | anode passivation | [ | |||
17 | 2022 | photocatalytic method | photocatalysts | — | no sludge production | pH dependence | [ | |||
18 | 2022 | photo-reduction method | MOF-based photocatalyst | — | unique versatilities facile structural modulation | expensive | [ | |||
19 | 2022 | microbial immobilization technology | — | — | eco-friendly | complexity of the operation | [ | |||
20 | 2022 | adsorption | surface-modified silicas | silica modified with 1-methyl-3-(triethoxysilypropyl) imidazolium chloride (Q = 428 mg g‒1) | high performance | regeneration | [ | |||
21 | 2022 | photocatalytic method | MOFs-based photocatalysts | — | wide range of MOFs | laboratory scale | [ | |||
22 | 2022 | photocatalytic method | semiconductor heterojunctions | — | large amount of candidates | energy utilization efficiency | [ | |||
23 | 2023 | photocatalytic reduction | Bi-based photocatalysts | BiVO4 FoM = 3.45 × 10‒5 mol g‒1 Wh‒1 | abundance adjustable optical property high efficiency environment harmless | laboratory scale lack of cost/energy evaluation | this work |
Order | Bi-based material | Example | Crystal structure | Morphology | surface area (m2 g‒1) | UV/visible light response ability | Bandgap energy (Eg, eV) | Estimated light absorption edge (nm) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Bismuth sulfide | Bi2S3 | orthorhombic | ![]() | 31.9 | visible light near infrared | 1.3 | ~953 | [ |
2 | Bismuth oxides | Bi2O3 | monoclinic tetragonal body-centered cubic | ![]() | 1.91 | UV/visible light | 2.26‒2.95 | ~420‒548 | [ |
3 | Bismuth oxyhalides | BiOCl | tetragonal | ![]() | 18.06 | UV | 3.3 | ~375 | [ |
4 | BiOBr | tetragonal | ![]() | 76.38 | UV/visible light | 2.64 | ~469 | [ | |
5 | BiOI | tetragonal | ![]() | 52.76 | visible light | 1.77 | ~700 | [ | |
6 | Bi-based multicomponent oxides | Bi2WO6 | orthorhombic | ![]() | 59.46 | UV/visible light | 2.91 | ~426 | [ |
7 | Bi2MoO6 | orthorhombic | ![]() | 18.75 | UV/visible light | 2.62 | ~473 | [ | |
8 | BiVO4 | monoclinic tetragonal octahedral | ![]() | 115 | UV/visible light | 2.4 | ~516 | [ | |
9 | Bi4Ti3O12 | — | ![]() | 15 | UV | 3.29 | ~376 | [ | |
10 | Bi-based metal organic frameworks | IEF-5 | monoclinic | ![]() | 30 | UV/visible light | 2.4 | ~516 | [ |
11 | CAU-7 | monoclinic | ![]() | 104 | UV | 3.47 | ~357 | [56,59] | |
12 | CAU-17 | — | ![]() | 93.15 | UV | 3.77 | ~328 | [ | |
13 | SU-100 | monoclinic | ![]() | 395 | — | — | — | [ |
Table 2 Comparison of morphology and optical properties for different Bi-based materials.
Order | Bi-based material | Example | Crystal structure | Morphology | surface area (m2 g‒1) | UV/visible light response ability | Bandgap energy (Eg, eV) | Estimated light absorption edge (nm) | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Bismuth sulfide | Bi2S3 | orthorhombic | ![]() | 31.9 | visible light near infrared | 1.3 | ~953 | [ |
2 | Bismuth oxides | Bi2O3 | monoclinic tetragonal body-centered cubic | ![]() | 1.91 | UV/visible light | 2.26‒2.95 | ~420‒548 | [ |
3 | Bismuth oxyhalides | BiOCl | tetragonal | ![]() | 18.06 | UV | 3.3 | ~375 | [ |
4 | BiOBr | tetragonal | ![]() | 76.38 | UV/visible light | 2.64 | ~469 | [ | |
5 | BiOI | tetragonal | ![]() | 52.76 | visible light | 1.77 | ~700 | [ | |
6 | Bi-based multicomponent oxides | Bi2WO6 | orthorhombic | ![]() | 59.46 | UV/visible light | 2.91 | ~426 | [ |
7 | Bi2MoO6 | orthorhombic | ![]() | 18.75 | UV/visible light | 2.62 | ~473 | [ | |
8 | BiVO4 | monoclinic tetragonal octahedral | ![]() | 115 | UV/visible light | 2.4 | ~516 | [ | |
9 | Bi4Ti3O12 | — | ![]() | 15 | UV | 3.29 | ~376 | [ | |
10 | Bi-based metal organic frameworks | IEF-5 | monoclinic | ![]() | 30 | UV/visible light | 2.4 | ~516 | [ |
11 | CAU-7 | monoclinic | ![]() | 104 | UV | 3.47 | ~357 | [56,59] | |
12 | CAU-17 | — | ![]() | 93.15 | UV | 3.77 | ~328 | [ | |
13 | SU-100 | monoclinic | ![]() | 395 | — | — | — | [ |
Fig. 2. The predicted chemical speciation of Cr(VI) at different pH values. Ionic strength 0.1 mol L?1 and [Cr(VI)] = 0.57 mmol L?1. Reprinted with the permission from Ref. [63]. Copyright 2016, Royal Society of Chemistry.
Fig. 3. The effect of experimental parameters on photocatalytic Cr(VI) removal in CF/C3N4/Bi2MoO6 system: catalyst (a), pH (b), co-existing ions (c), and water source (d). Reprinted from Ref. [81]. Copyright 2022, Elsevier B.V.
Order | Photocatalyst | Synthesis method | Modification strategy | Light source | Power of light source (W) | Conc. (g L-1) | Solution vol. (mL) | Time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I. Heterojunction construction | |||||||||||||
1 | Cd0.5Zn0.5S/ Bi2WO6 | hydrothermal method calcination | S-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.2 | 100 | 20 | 20 | 95.80 | 0.1593 | 1.84E-05 | [ |
2 | Bi2O2CO3/RP | hydrothermal method | S-scheme heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 40 | 99.20 | 0.22 | 1.53E-05 | [ |
3 | BiO2-x/BiOCl | solvothermal method | type-I heterojunction | LED | 35 | 0.5 | 40 | 120 | 20 | 87 | 0.02994 | 9.56E-06 | [ |
4 | BixOy/CdS | solvothermal method | heterojunction | Xe lamp | 350 | 0.6 | 50 | 30 | 41.6 | 100 | 0.1265 | 7.62E-06 | [ |
5 | BiVO4@Bi2S3 | hydrothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 350 | 0.7 | 50 | 40 | 50 | 100 | 0.071 | 5.89E-06 | [ |
6 | Bi2O3/HRP | hydrothermal method | heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 14 | 100 | 0.11775 | 5.38E-06 | [ |
7 | BiOCl coated UiO-66-NH2 | oil bath precipitation method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 20 | 8 | 100 | 0.233 | 3.08E-06 | [ |
8 | Bi2S3/BiOCl @ZnIn2S4 | oil bath | heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 40 | 60 | 50 | 85 | 0.0293 | 2.72E-06 | [ |
9 | Bi2S3@NH2- MIL-125(Ti) | solvothermal method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.1 | N.A. | 120 | 10 | 77 | 0.01134 | 2.47E-06 | [ |
10 | TCPP/GQDs/ Bi2MoO6 | solvothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.25 | 80 | 60 | 10 | 90.70 | 0.0364 | 2.33E-06 | [ |
11 | BiOBr/g-C3N4 | in situ deposition method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.4 | 120 | 50 | 10 | ~90 | — | 1.73E-06 | [ |
12 | AgI/Bi24O31Cl10 | in situ precipitation method | Z-scheme heterojunction | Xe lamp | 300 | 0.3 | 100 | 60 | 10 | 78.26 | 0.0236 | 1.67E-06 | [ |
13 | BiVO4/Bi2S3 | solvothermal method | type-II heterojunction | Xe lamp | 300 | 1.0 | 300 | 150 | 50 | 100 | — | 1.28E-06 | [ |
14 | MIL-125-NH2 @BiOI | solvothermal method | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.0 | 40 | 120 | 40 | 100 | — | 1.28E-06 | [ |
15 | Bi2O3 QDs/g-C3N4 | wet impregnation manual grinding | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 100 | 60 | 10 | 87.90 | 0.0335 | 1.13E-06 | [ |
16 | Bi2S3/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 180 | 50 | 100 | — | 1.07E-06 | [ |
17 | BUC-21/ Bi24O31Br10 | hydrothermal method | heterojunction | Xe lamp | 500 | 0.25 | 200 | 120 | 10 | 99.90 | 0.06287 | 7.68E-07 | [ |
18 | Bi2MoO6/CeO2 | solvothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 300 | 0.6 | 50 | 90 | 10 | 98.40 | — | 7.01E-07 | [ |
19 | Bi2S3@CdS @rGO | hydrothermal method | S scheme heterojunction | Xe lamp 800 nm > λ > 420 nm | 300 | 0.6 | 50 | 150 | 20 | 81.51 | 0.0155 | 6.97E-07 | [ |
20 | Bi12O17Cl2/ MIL-100(Fe) | solvothermal method | type-II heterojunction | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | ~100 | 0.00483 | 6.41E-07 | [ |
21 | MIL-53(Fe)/ Bi12O17Cl2 | solvothermal method | Z-scheme heterojunction | Xe lamp | 500 | 0.5 | 100 | 90 | 10 | 99.20 | 0.0284 | 5.09E-07 | [ |
22 | ZnO-Ag-BiVO4 | hydrothermal method | Z-scheme heterojunction | tungsten lamp λ > 400 nm | 150 | 0.4 | 100 | 70 | 1.7 | 97 | 0.0371 | 4.53E-07 | [ |
23 | Bi3NbO7/BiOCl | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 400 nm | 300 | 0.5 | 50 | 40 | 1.7 | 94 | 0.0864 | 3.07E-07 | [ |
24 | KmoP@CdS @Bi2S3 | hydrothermal method | Z-scheme heterojunction | Xe lamp 780 nm > λ > 420 nm | 300 | 1.0 | 30 | 120 | 10 | 95.50 | — | 3.06E-07 | [ |
25 | Bi4Ti3O12/ Bi2Ti2O7 | calcination | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.5 | 100 | 120 | 0.7 | 39 | 0.0034 | 6.02E-09 | [ |
26 | Ag/AgBr/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | N.A. | 60 | 60 | 10 | 91.72 | 0.0405 | N.A. | [ |
average FoM value | 3.41E-06 | ||||||||||||
II. Defect engineering | |||||||||||||
1 | BiSI | solvothermal/ hydrothermal method | O doping sulfur vacancy | Xe lamp | 300 | 1.0 | 50 | 30 | 20 | ~100 | 0.191 | 2.56E-06 | [ |
2 | Bi4O5Br2/Bi2S3 | hydrothermal method | Z-scheme heterojunction oxygen vacancy | Xe lamp | 500 | 0.4 | 800 | 80 | 20 | 91.30 | 0.02363 | 1.32E-06 | [ |
3 | Bi3.25La0.75Ti3O12-x | hydrothermal method | oxygen vacancy La doping | Xe lamp λ > 420 nm | 300 | 0.4 | 100 | 200 | 20 | 95.10 | 9.14E-07 | [ | |
4 | N-SSC/Bi2WO6 | hydrothermal method | oxygen vacancy | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 10 | 28 | 0.0031 | 8.97E-08 | [ |
5 | Bi.33(Bi6S9) Br/Bi2S3 | hydrothermal method | Z-scheme heterojunction sulfur defect | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 60 | N.A. | 94.40 | 0.0488 | N.A. | [ |
III. Element doping | |||||||||||||
1 | Ca-doped BiFeO3 | combustion method | Ca doping | Xe lamp | 35 | 0.4 | 50 | 210 | 17.5 | 89.92 | 0.00364 | 6.18E-06 | [ |
2 | In-doped Bi2MoO6 | hydrothermal- calcination process | In doping | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 30 | 20 | 98 | 0.0626 | 5.03E-06 | [ |
3 | Sn-doped BiOBr | hydrothermal method | Sn doping | Xe lamp | 300 | 0.4 | 50 | 60 | 15 | ~90 | 0.33316 | 2.16E-06 | [ |
4 | Cl-doped Bi2S3 | hydrothermal method | Cl doping | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 100 | 10 | 96.60 | 0.0357 | 1.86E-06 | [ |
5 | Bi2S3/Ag | hydrothermal method | Ag doping | Xe lamp 700 nm > λ > 400 nm | 300 | 0.5 | 100 | 75 | 10 | 97.00 | 0.0455 | 9.95E-07 | [ |
6 | I-BiOBr/ Bi12GeO20 | water bath method | Z-scheme heterojunction I doping | Xe lamp λ > 420 nm | 250 | 0.5 | 100 | 60 | 10 | ~60 | 0.0113 | 9.23E-07 | [ |
7 | CrO42- intercalated BiOBr | hydrothermal method | CrO42- doping | Xe lamp λ > 420 nm | 500 | 0.4 | 50 | 120 | 10 | 100 | — | 4.81E-07 | [ |
8 | Na2WO4BiBDC | hydrothermal method | WO42- doping | Xe lamp λ > 365 nm | 350 | 1.0 | 50 | 180 | 20 | 70 | 0.006 | 2.56E-07 | [ |
average FoM value | 2.23E-06 | ||||||||||||
IV. Others | |||||||||||||
1 | BiVO4 | solvothermal method | — | Xe lamp | 35 | 0.2 | 50 | 160 | 35 | 95.09 | 0.01626 | 3.43E-05 | [ |
2 | CaBiO3 | calcination | — | 1200 nm > λ > 300 nm | 150 | 0.9 | 100 | 120 | 364 | 94 | 0.0147 | 2.44E-05 | [ |
3 | Bi2MoO6/Ti3C2 Mxene | hydrothermal method | — | LED λ > 400 nm | 50 | 0.5 | 20 | 60 | 15 | 100 | — | 1.15E-05 | [ |
4 | BiOCl | hydrolytic process | — | mercury lamp | 150 | 0.2 | N.A. | 120 | 20 | ~100 | 0.1076 1 | 6.41E-06 | [ |
5 | Bi4O5I2 nanosheets | hydrolysis solvothermal approach | — | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 60 | 90 | — | 1.73E-06 | [ |
6 | BiOBr/CCNF | calcination hydrothermal method | — | LED | 200 | 0.5 | 100 | 90 | 10 | ~70 | 0.21 mmol g-1 h-1 | 8.97E-07 | [ |
7 | Bi2O2CO3 | hydrothermal method | — | Xe lamp | 300 | 0.5 | 100 | 30 | 3.5 | 97.90 | 0.6875 | 8.79E-07 | [ |
8 | Bi2Fe4O9 | calcination | — | tungsten lamp | 200 | 1.5 | 100 | 180 | 25 | 97 | — | 5.18E-07 | [ |
9 | BC/Bi/Fe3O4 | calcination approach | — | Xe lamp λ > 400 nm | 300 | 1.0 | 200 | 180 | 20 | 95 | 0.0114 | 4.06E-07 | [ |
10 | Bi2MoO6 | hydrothermal method | — | Xe lamp λ > 400 nm | 300 | 0.6 | 50 | 120 | 3.5 | ~95 | 0.024 | 1.78E-07 | [ |
11 | CoFe2O4/BiOCl | solvothermal method | — | Xe lamp | 300 | 1.0 | 10 | 120 | N.A. | 78 | — | N.A. | [ |
Table 3 Performance evaluation of Bi-based catalysts in photocatalytic reduction of Cr(VI).
Order | Photocatalyst | Synthesis method | Modification strategy | Light source | Power of light source (W) | Conc. (g L-1) | Solution vol. (mL) | Time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I. Heterojunction construction | |||||||||||||
1 | Cd0.5Zn0.5S/ Bi2WO6 | hydrothermal method calcination | S-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.2 | 100 | 20 | 20 | 95.80 | 0.1593 | 1.84E-05 | [ |
2 | Bi2O2CO3/RP | hydrothermal method | S-scheme heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 40 | 99.20 | 0.22 | 1.53E-05 | [ |
3 | BiO2-x/BiOCl | solvothermal method | type-I heterojunction | LED | 35 | 0.5 | 40 | 120 | 20 | 87 | 0.02994 | 9.56E-06 | [ |
4 | BixOy/CdS | solvothermal method | heterojunction | Xe lamp | 350 | 0.6 | 50 | 30 | 41.6 | 100 | 0.1265 | 7.62E-06 | [ |
5 | BiVO4@Bi2S3 | hydrothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 350 | 0.7 | 50 | 40 | 50 | 100 | 0.071 | 5.89E-06 | [ |
6 | Bi2O3/HRP | hydrothermal method | heterojunction | Xe lamp | 300 | 0.25 | 20 | 40 | 14 | 100 | 0.11775 | 5.38E-06 | [ |
7 | BiOCl coated UiO-66-NH2 | oil bath precipitation method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 20 | 8 | 100 | 0.233 | 3.08E-06 | [ |
8 | Bi2S3/BiOCl @ZnIn2S4 | oil bath | heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 40 | 60 | 50 | 85 | 0.0293 | 2.72E-06 | [ |
9 | Bi2S3@NH2- MIL-125(Ti) | solvothermal method | heterojunction | Xe lamp λ > 420 nm | 300 | 0.1 | N.A. | 120 | 10 | 77 | 0.01134 | 2.47E-06 | [ |
10 | TCPP/GQDs/ Bi2MoO6 | solvothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.25 | 80 | 60 | 10 | 90.70 | 0.0364 | 2.33E-06 | [ |
11 | BiOBr/g-C3N4 | in situ deposition method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 0.4 | 120 | 50 | 10 | ~90 | — | 1.73E-06 | [ |
12 | AgI/Bi24O31Cl10 | in situ precipitation method | Z-scheme heterojunction | Xe lamp | 300 | 0.3 | 100 | 60 | 10 | 78.26 | 0.0236 | 1.67E-06 | [ |
13 | BiVO4/Bi2S3 | solvothermal method | type-II heterojunction | Xe lamp | 300 | 1.0 | 300 | 150 | 50 | 100 | — | 1.28E-06 | [ |
14 | MIL-125-NH2 @BiOI | solvothermal method | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.0 | 40 | 120 | 40 | 100 | — | 1.28E-06 | [ |
15 | Bi2O3 QDs/g-C3N4 | wet impregnation manual grinding | heterojunction | Xe lamp λ > 420 nm | 300 | 0.5 | 100 | 60 | 10 | 87.90 | 0.0335 | 1.13E-06 | [ |
16 | Bi2S3/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 180 | 50 | 100 | — | 1.07E-06 | [ |
17 | BUC-21/ Bi24O31Br10 | hydrothermal method | heterojunction | Xe lamp | 500 | 0.25 | 200 | 120 | 10 | 99.90 | 0.06287 | 7.68E-07 | [ |
18 | Bi2MoO6/CeO2 | solvothermal method | type-II heterojunction | Xe lamp λ > 420 nm | 300 | 0.6 | 50 | 90 | 10 | 98.40 | — | 7.01E-07 | [ |
19 | Bi2S3@CdS @rGO | hydrothermal method | S scheme heterojunction | Xe lamp 800 nm > λ > 420 nm | 300 | 0.6 | 50 | 150 | 20 | 81.51 | 0.0155 | 6.97E-07 | [ |
20 | Bi12O17Cl2/ MIL-100(Fe) | solvothermal method | type-II heterojunction | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | ~100 | 0.00483 | 6.41E-07 | [ |
21 | MIL-53(Fe)/ Bi12O17Cl2 | solvothermal method | Z-scheme heterojunction | Xe lamp | 500 | 0.5 | 100 | 90 | 10 | 99.20 | 0.0284 | 5.09E-07 | [ |
22 | ZnO-Ag-BiVO4 | hydrothermal method | Z-scheme heterojunction | tungsten lamp λ > 400 nm | 150 | 0.4 | 100 | 70 | 1.7 | 97 | 0.0371 | 4.53E-07 | [ |
23 | Bi3NbO7/BiOCl | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 400 nm | 300 | 0.5 | 50 | 40 | 1.7 | 94 | 0.0864 | 3.07E-07 | [ |
24 | KmoP@CdS @Bi2S3 | hydrothermal method | Z-scheme heterojunction | Xe lamp 780 nm > λ > 420 nm | 300 | 1.0 | 30 | 120 | 10 | 95.50 | — | 3.06E-07 | [ |
25 | Bi4Ti3O12/ Bi2Ti2O7 | calcination | type-II heterojunction | Xe lamp λ > 400 nm | 300 | 1.5 | 100 | 120 | 0.7 | 39 | 0.0034 | 6.02E-09 | [ |
26 | Ag/AgBr/BiVO4 | hydrothermal method | Z-scheme heterojunction | Xe lamp λ > 420 nm | 300 | N.A. | 60 | 60 | 10 | 91.72 | 0.0405 | N.A. | [ |
average FoM value | 3.41E-06 | ||||||||||||
II. Defect engineering | |||||||||||||
1 | BiSI | solvothermal/ hydrothermal method | O doping sulfur vacancy | Xe lamp | 300 | 1.0 | 50 | 30 | 20 | ~100 | 0.191 | 2.56E-06 | [ |
2 | Bi4O5Br2/Bi2S3 | hydrothermal method | Z-scheme heterojunction oxygen vacancy | Xe lamp | 500 | 0.4 | 800 | 80 | 20 | 91.30 | 0.02363 | 1.32E-06 | [ |
3 | Bi3.25La0.75Ti3O12-x | hydrothermal method | oxygen vacancy La doping | Xe lamp λ > 420 nm | 300 | 0.4 | 100 | 200 | 20 | 95.10 | 9.14E-07 | [ | |
4 | N-SSC/Bi2WO6 | hydrothermal method | oxygen vacancy | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 10 | 28 | 0.0031 | 8.97E-08 | [ |
5 | Bi.33(Bi6S9) Br/Bi2S3 | hydrothermal method | Z-scheme heterojunction sulfur defect | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 60 | N.A. | 94.40 | 0.0488 | N.A. | [ |
III. Element doping | |||||||||||||
1 | Ca-doped BiFeO3 | combustion method | Ca doping | Xe lamp | 35 | 0.4 | 50 | 210 | 17.5 | 89.92 | 0.00364 | 6.18E-06 | [ |
2 | In-doped Bi2MoO6 | hydrothermal- calcination process | In doping | Xe lamp λ > 420 nm | 300 | 0.5 | 40 | 30 | 20 | 98 | 0.0626 | 5.03E-06 | [ |
3 | Sn-doped BiOBr | hydrothermal method | Sn doping | Xe lamp | 300 | 0.4 | 50 | 60 | 15 | ~90 | 0.33316 | 2.16E-06 | [ |
4 | Cl-doped Bi2S3 | hydrothermal method | Cl doping | Xe lamp λ > 420 nm | 300 | 0.2 | 50 | 100 | 10 | 96.60 | 0.0357 | 1.86E-06 | [ |
5 | Bi2S3/Ag | hydrothermal method | Ag doping | Xe lamp 700 nm > λ > 400 nm | 300 | 0.5 | 100 | 75 | 10 | 97.00 | 0.0455 | 9.95E-07 | [ |
6 | I-BiOBr/ Bi12GeO20 | water bath method | Z-scheme heterojunction I doping | Xe lamp λ > 420 nm | 250 | 0.5 | 100 | 60 | 10 | ~60 | 0.0113 | 9.23E-07 | [ |
7 | CrO42- intercalated BiOBr | hydrothermal method | CrO42- doping | Xe lamp λ > 420 nm | 500 | 0.4 | 50 | 120 | 10 | 100 | — | 4.81E-07 | [ |
8 | Na2WO4BiBDC | hydrothermal method | WO42- doping | Xe lamp λ > 365 nm | 350 | 1.0 | 50 | 180 | 20 | 70 | 0.006 | 2.56E-07 | [ |
average FoM value | 2.23E-06 | ||||||||||||
IV. Others | |||||||||||||
1 | BiVO4 | solvothermal method | — | Xe lamp | 35 | 0.2 | 50 | 160 | 35 | 95.09 | 0.01626 | 3.43E-05 | [ |
2 | CaBiO3 | calcination | — | 1200 nm > λ > 300 nm | 150 | 0.9 | 100 | 120 | 364 | 94 | 0.0147 | 2.44E-05 | [ |
3 | Bi2MoO6/Ti3C2 Mxene | hydrothermal method | — | LED λ > 400 nm | 50 | 0.5 | 20 | 60 | 15 | 100 | — | 1.15E-05 | [ |
4 | BiOCl | hydrolytic process | — | mercury lamp | 150 | 0.2 | N.A. | 120 | 20 | ~100 | 0.1076 1 | 6.41E-06 | [ |
5 | Bi4O5I2 nanosheets | hydrolysis solvothermal approach | — | Xe lamp λ > 420 nm | 300 | 1.0 | 50 | 120 | 60 | 90 | — | 1.73E-06 | [ |
6 | BiOBr/CCNF | calcination hydrothermal method | — | LED | 200 | 0.5 | 100 | 90 | 10 | ~70 | 0.21 mmol g-1 h-1 | 8.97E-07 | [ |
7 | Bi2O2CO3 | hydrothermal method | — | Xe lamp | 300 | 0.5 | 100 | 30 | 3.5 | 97.90 | 0.6875 | 8.79E-07 | [ |
8 | Bi2Fe4O9 | calcination | — | tungsten lamp | 200 | 1.5 | 100 | 180 | 25 | 97 | — | 5.18E-07 | [ |
9 | BC/Bi/Fe3O4 | calcination approach | — | Xe lamp λ > 400 nm | 300 | 1.0 | 200 | 180 | 20 | 95 | 0.0114 | 4.06E-07 | [ |
10 | Bi2MoO6 | hydrothermal method | — | Xe lamp λ > 400 nm | 300 | 0.6 | 50 | 120 | 3.5 | ~95 | 0.024 | 1.78E-07 | [ |
11 | CoFe2O4/BiOCl | solvothermal method | — | Xe lamp | 300 | 1.0 | 10 | 120 | N.A. | 78 | — | N.A. | [ |
Fig. 4. Schematic of three types of heterojunction photocatalysts: type-I (a: Straddling gap), type-II (b: staggered gap), and type-III (c: broken gap). Reprinted from Ref. [113]. Copyright 2017, John Wiley & Sons. Inc.
Fig. 5. Photoelectric property comparison among MIL-125-NH2@BiOI composite (MNB-5), BiOI, and MIL-125-NH2: photocurrent (a) and impedance diagram (b). Reprinted from Ref. [114]. Copyright 2022, Elsevier B.V.
Fig. 6. Photocatalytic mechanism of TC degradation and Cr(VI) reduction over TCPP/G/BMO under visible light irradiation. Reprinted from Ref. [27]. Copyright 2022, Elsevier B.V.
Fig. 8. Photoelectric property comparison between Bi2S3 and Bi2S3/Ag nanostructures with varying weight ratios of Ag to Bi2S3: electrochemical impedance spectroscopy (a) and transient photocurrent spectrum (b). Reprinted from Ref. [32]. Copyright 2021 American Chemical Society.
Order | Photocatalyst | Light source | Power of light source (W) | Catalyst conc. (g L-1) | Solution vol. (mL) | Reaction time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
I. Noble metal-modified catalysts | |||||||||||
1 | Ag@TiO2 | mercury lamp | 300 | 0.01 | 50 | 60 | 20 | 99.80 | 0.0525 | 1.28E-04 | [ |
2 | MIL-53(Fe)/CQDs/AuNPs | Xe lamp | 300 | 0.5 | 40 | 30 | 20 | 100.00 | 0.18197 | 5.13E-06 | [ |
3 | Pt-UiO-66-NH2 | Xe lamp | 300 | 1.0 | 40 | 80 | 50 | ~70 | — | 1.68E-06 | [ |
4 | TiO2@Pt@CeO2 | Xe lamp | 300 | 0.3 | 100 | 160 | 5 | 99.00 | — | 3.97E-07 | [ |
II. MOF-based catalysts | |||||||||||
1 | JUL-MOF60 | Xe lamp | 300 | 0.4 | 25 | 70 | 160 | 98.00 | — | 2.15E-05 | [ |
2 | MIL-100(Fe)/g-C3N4 | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | 97.00 | 0.037 | 6.22E-07 | [ |
3 | Cd0.5Zn0.5S@ZIF-8 | Xe lamp | 300 | 1.0 | 40 | 30 | 20 | 100.00 | — | 2.56E-06 | [ |
4 | TiO2/MIL-125 | Xe lamp | 300 | 0.3 | 50 | 60 | 5 | 100.00 | 0.1059 | 1.07E-06 | [ |
III. Metal sulfide catalysts | |||||||||||
1 | N-CoSx | Xe lamp | 300 | 0.2 | 25 | 25 | 10 | 100.00 | 0.1662 | 7.69E-06 | [ |
2 | SnS2 with SVs | Xe lamp | 500 | 0.2 | 50 | 90 | 50 | 99.80 | 0.123 | 6.40E-06 | [ |
3 | CoSx/CdS | Xe lamp | 300 | 0.2 | 50 | 30 | 10 | 99.80 | 0.2202 | 6.40E-06 | [ |
4 | CaInS2-decorated WS2 | metal halogen lamp | 400 | 0.5 | 50 | 90 | 80 | 98.00 | 0.034 | 5.03E-06 | [ |
IV. g-C3N4-based catalysts | |||||||||||
1 | MgIn2S4/O-doped g-C3N4 | Xe lamp | 300 | 0.5 | 50 | 50 | 20 | 99.10 | 0.07605 | 3.05E-06 | [ |
2 | N-TiO2/O-doped N vacancy g-C3N4 | Xe lamp | 300 | 0.4 | 100 | 120 | 15 | 89.50 | 0.0178 | 1.08E-06 | [ |
3 | CoS2/g-C3N4-rGO | Xe lamp | 350 | 0.5 | 20 | 150 | 20 | 99.80 | 0.0179 | 8.77E-07 | [ |
4 | Br-doped g-C3N4 | Xe lamp | 300 | 1.0 | 50 | 120 | 20 | 61.60 | 0.00495 | 3.95E-07 | [ |
V. Other catalysts | |||||||||||
1 | Mxene/ZnIn2S4 | Xe lamp | 300 | 0.2 | 65 | 45 | 20 | 93.40 | 0.06343 | 1.04E-05 | [ |
2 | ZnO-Fe2O3 | Xe lamp | 300 | 0.4 | 100 | 60 | 20 | 87.50 | 0.05922 | 2.80E-06 | [ |
3 | GODs/TiO2 | Xe lamp | 300 | 0.4 | 50 | 60 | 40 | 22.00 | — | 1.41E-06 | [ |
4 | SnIn4S8/CeO2 | Xe lamp | 300 | 0.6 | 50 | 150 | 20 | 98.80 | 0.047 | 8.44E-07 | [ |
5 | CuS/TiO2 | metal halide lamp | 400 | 1.0 | 50 | 210 | 30 | 84.70 | — | 3.49E-07 | [ |
Table 4 Performance evaluation of non-Bi-based catalysts in photocatalytic reduction of Cr(VI).
Order | Photocatalyst | Light source | Power of light source (W) | Catalyst conc. (g L-1) | Solution vol. (mL) | Reaction time (min) | Cr(VI) conc. (mg L-1) | Cr(VI) removal rate (%) | k (min-1) | FoM (mol g-1 Wh-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
I. Noble metal-modified catalysts | |||||||||||
1 | Ag@TiO2 | mercury lamp | 300 | 0.01 | 50 | 60 | 20 | 99.80 | 0.0525 | 1.28E-04 | [ |
2 | MIL-53(Fe)/CQDs/AuNPs | Xe lamp | 300 | 0.5 | 40 | 30 | 20 | 100.00 | 0.18197 | 5.13E-06 | [ |
3 | Pt-UiO-66-NH2 | Xe lamp | 300 | 1.0 | 40 | 80 | 50 | ~70 | — | 1.68E-06 | [ |
4 | TiO2@Pt@CeO2 | Xe lamp | 300 | 0.3 | 100 | 160 | 5 | 99.00 | — | 3.97E-07 | [ |
II. MOF-based catalysts | |||||||||||
1 | JUL-MOF60 | Xe lamp | 300 | 0.4 | 25 | 70 | 160 | 98.00 | — | 2.15E-05 | [ |
2 | MIL-100(Fe)/g-C3N4 | Xe lamp | 300 | 0.5 | 200 | 120 | 10 | 97.00 | 0.037 | 6.22E-07 | [ |
3 | Cd0.5Zn0.5S@ZIF-8 | Xe lamp | 300 | 1.0 | 40 | 30 | 20 | 100.00 | — | 2.56E-06 | [ |
4 | TiO2/MIL-125 | Xe lamp | 300 | 0.3 | 50 | 60 | 5 | 100.00 | 0.1059 | 1.07E-06 | [ |
III. Metal sulfide catalysts | |||||||||||
1 | N-CoSx | Xe lamp | 300 | 0.2 | 25 | 25 | 10 | 100.00 | 0.1662 | 7.69E-06 | [ |
2 | SnS2 with SVs | Xe lamp | 500 | 0.2 | 50 | 90 | 50 | 99.80 | 0.123 | 6.40E-06 | [ |
3 | CoSx/CdS | Xe lamp | 300 | 0.2 | 50 | 30 | 10 | 99.80 | 0.2202 | 6.40E-06 | [ |
4 | CaInS2-decorated WS2 | metal halogen lamp | 400 | 0.5 | 50 | 90 | 80 | 98.00 | 0.034 | 5.03E-06 | [ |
IV. g-C3N4-based catalysts | |||||||||||
1 | MgIn2S4/O-doped g-C3N4 | Xe lamp | 300 | 0.5 | 50 | 50 | 20 | 99.10 | 0.07605 | 3.05E-06 | [ |
2 | N-TiO2/O-doped N vacancy g-C3N4 | Xe lamp | 300 | 0.4 | 100 | 120 | 15 | 89.50 | 0.0178 | 1.08E-06 | [ |
3 | CoS2/g-C3N4-rGO | Xe lamp | 350 | 0.5 | 20 | 150 | 20 | 99.80 | 0.0179 | 8.77E-07 | [ |
4 | Br-doped g-C3N4 | Xe lamp | 300 | 1.0 | 50 | 120 | 20 | 61.60 | 0.00495 | 3.95E-07 | [ |
V. Other catalysts | |||||||||||
1 | Mxene/ZnIn2S4 | Xe lamp | 300 | 0.2 | 65 | 45 | 20 | 93.40 | 0.06343 | 1.04E-05 | [ |
2 | ZnO-Fe2O3 | Xe lamp | 300 | 0.4 | 100 | 60 | 20 | 87.50 | 0.05922 | 2.80E-06 | [ |
3 | GODs/TiO2 | Xe lamp | 300 | 0.4 | 50 | 60 | 40 | 22.00 | — | 1.41E-06 | [ |
4 | SnIn4S8/CeO2 | Xe lamp | 300 | 0.6 | 50 | 150 | 20 | 98.80 | 0.047 | 8.44E-07 | [ |
5 | CuS/TiO2 | metal halide lamp | 400 | 1.0 | 50 | 210 | 30 | 84.70 | — | 3.49E-07 | [ |
order | Aspect | Challenge | Future direction |
---|---|---|---|
1 | photocatalyst development | developing high efficient Bi-based photocatalysts for Cr(VI) reduction | attempting more modification strategies on Bi-based materials (e.g., microenvironment regulation) |
2 | expiration time of Bi-based photocatalysts | conducting long-term performance evaluation test for Bi-based materials to demonstrate expiration time development of detection technology to check the potential leakage of nano-metals or toxic metal ions | |
3 | objective assessment metrics | creating more objective and comprehension assessment metrics for the fair comparison of different photocatalysts comparing the best performer of Bi-based materials with other promising candidates to determine the most suitable photocatalysts | |
4 | photocatalytic Cr(VI) reduction system designing and application | complicated industrial wastewater composition | investigation of detailed parameters for treated Cr(VI) containing wastewater, including pH, composition, Cr(VI) concentration etc. |
5 | confined to lab-scale test | pilot-scale experiment of Bi-based photocatalytic Cr(VI) reduction system | |
6 | energy and cost estimation | lowering the cost of material preparation through massive production or find green and cost-effective synthesis method for the fabrication of Bi-based materials developing Bi-based photocatalysts with excellent optical property to reduce energy consumption by directly utilizing solar energy | |
7 | economical assessment | life cycle assessment to determine the total cost of Bi-based photocatalytic system, from material fabrication, application, and disposal. potential influence to the surrounding environment should be evaluated after the building of photocatalytic Cr(VI) reduction unit. |
Table 5 Current challenges and future perspectives for the development/application of Bi-based photocatalysts in the field of Cr(VI) reduction.
order | Aspect | Challenge | Future direction |
---|---|---|---|
1 | photocatalyst development | developing high efficient Bi-based photocatalysts for Cr(VI) reduction | attempting more modification strategies on Bi-based materials (e.g., microenvironment regulation) |
2 | expiration time of Bi-based photocatalysts | conducting long-term performance evaluation test for Bi-based materials to demonstrate expiration time development of detection technology to check the potential leakage of nano-metals or toxic metal ions | |
3 | objective assessment metrics | creating more objective and comprehension assessment metrics for the fair comparison of different photocatalysts comparing the best performer of Bi-based materials with other promising candidates to determine the most suitable photocatalysts | |
4 | photocatalytic Cr(VI) reduction system designing and application | complicated industrial wastewater composition | investigation of detailed parameters for treated Cr(VI) containing wastewater, including pH, composition, Cr(VI) concentration etc. |
5 | confined to lab-scale test | pilot-scale experiment of Bi-based photocatalytic Cr(VI) reduction system | |
6 | energy and cost estimation | lowering the cost of material preparation through massive production or find green and cost-effective synthesis method for the fabrication of Bi-based materials developing Bi-based photocatalysts with excellent optical property to reduce energy consumption by directly utilizing solar energy | |
7 | economical assessment | life cycle assessment to determine the total cost of Bi-based photocatalytic system, from material fabrication, application, and disposal. potential influence to the surrounding environment should be evaluated after the building of photocatalytic Cr(VI) reduction unit. |
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[6] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[7] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[8] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[9] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[10] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[11] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[12] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[13] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[14] | 余治晗, 关晨, 岳晓阳, 向全军. 碳环渗入的结晶氮化碳S型同质结及其光催化析氢[J]. 催化学报, 2023, 50(7): 361-371. |
[15] | 李慧杰, 池漫洲, 辛兴, 王瑞杰, 刘天府, 吕红金, 杨国昱. 异金属取代的多金属氧酸盐@光响应型金属-有机框架用于高选择性光催化CO2还原[J]. 催化学报, 2023, 50(7): 343-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||