催化学报 ›› 2023, Vol. 55: 1-19.DOI: 10.1016/S1872-2067(23)64556-5
• 综述 • 下一篇
刘成a, 刘胡润卿a, 余济美a,b, 吴棱a,*(), 李朝辉a,*(
)
收稿日期:
2023-09-12
接受日期:
2023-10-31
出版日期:
2023-12-18
发布日期:
2023-12-07
通讯作者:
*电子信箱: 基金资助:
Cheng Liua, Hurunqing Liua, Jimmy C. Yua,b, Ling Wua,*(), Zhaohui Lia,*(
)
Received:
2023-09-12
Accepted:
2023-10-31
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Ling Wu (State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University) received his Ph.D degree in 2004 from The Chinese University of Hong Kong. His research interests currently focus on photocatalysis and new materials based on MOFs and ultrathin inorganic metal oxide nanosheets, especially revealing the relationship of the surface structure and performances at molecular level. He has coauthored more than 260 peer-reviewed papers.Supported by:
摘要:
面对全球能源短缺和环境污染等问题, 发展绿色、可持续的能源来替代传统的化石能源成为迫切需求. 太阳能作为一种清洁可再生能源, 其有效转化与利用受到了广泛关注. 光催化将太阳能转化为化学能, 其核心是新型高效的光催化材料. 金属有机框架材料(MOFs), 是一类由金属或金属节点与多齿有机配体相互连接而成的微介孔材料, 具有独特的组成结构和特性, 有望成为有应用前景的光催化材料. 目前已有一些关于MOFs基光催化的综述, 但考虑到该领域在过去几年迅速发展, 为了研发高效的MOFs基光催化材料, 非常有必要对已经报道的用于提高MOFs基光催化剂性能的策略进行总结.
本综述重点总结了已报道的通过调控MOFs基材料的组成和结构的策略来提升其光催化性能的最新研究进展. 首先, 简要介绍了MOFs基材料的结构特点及其在光催化领域应用的优势, 阐述了MOFs基材料光催化的基本原理, 提出了影响其光催化性能的关键因素, 包括光吸收能力、光生载流子的分离和迁移以及催化活性位点. 其次, 阐明不同结构调控策略通过优化关键因素进而提高光催化性能的原理, 具体包括MOFs基材料中金属掺杂、配体功能化、超薄二维材料构筑以及缺陷工程策略. 然后, 通过总结典型案例, 详细讨论了上述策略如何通过调控MOFs基材料的组成和结构来优化关键因素, 从而提高MOFs基材料的光催化性能. 最后, 针对MOFs基材料光催化所面临的机遇、挑战及其发展趋势提出展望: (1) 影响MOFs基光催化剂效率的因素是多方面的, 因此将不同策略相结合有利于更好地提高MOFs基光催化剂的性能. 除了本文总结的四种构筑策略, 最近其它一些关于提升MOFs基材料光催化性能的结构调控策略也有零星报道, 如微环境调控、晶面工程等, 也值得进一步关注. (2) 与无机半导体光催化剂相比, MOFs基材料的结构稳定性较差, 因此应特别注意其在光催化条件下的稳定性, 特别是MOFs基材料在水中的反应体系. (3) 先进原位表征技术的发展和理论研究的深化对于高效MOF基光催化系统的设计及机理研究至关重要. (4) MOFs基材料的多功能性可以使其作为光诱导一锅多步反应的多功能催化材料, 应大力开展研究.
综上, 本文系统地总结了通过调控MOFs基材料的组成和结构从而达到提升其光催化性能的不同策略, 并就MOFs基材料光催化所面临的机遇、挑战及其发展趋势提出展望. 希望本文能够为深入了解MOFs基光催化体系中组成-结构-性能关系以及从原子水平来设计研发高效的MOFs基光催化剂提供参考.
刘成, 刘胡润卿, 余济美, 吴棱, 李朝辉. 高效光催化金属有机框架(MOFs)的构筑策略[J]. 催化学报, 2023, 55: 1-19.
Cheng Liu, Hurunqing Liu, Jimmy C. Yu, Ling Wu, Zhaohui Li. Strategies to engineer metal-organic frameworks for efficient photocatalysis[J]. Chinese Journal of Catalysis, 2023, 55: 1-19.
Fig. 1. Concept of MOFs by interconnecting metal ions/clusters with multi-dentated organic ligands to form a crystalline network via the coordination bonds.
Fig. 4. Mechanistic proposal to rationalize the photochemical behavior of mixed NH2-UiO-66(Zr/Ti). Reprinted with permission from Ref. [59]. Copyright 2017, American Chemical Society.
Fig. 5. (a) TEM image and corresponding EDS elemental mapping images of MIL-100(Fe0.63Al0.37). Reprinted with permission from Ref. [61]. Copyright 2022, Elsevier. (b) The mechanism of NNU-31-M CO2RR with H2O oxidation. The free-energy profile for the CO2RR pathway (c) and OER pathway (d). Reprinted with permission from Ref. [62]. Copyright 2019, Wiley-VCH. (e) Schematic illustration of synthetic of the PCN-250-Fe3 and PCN-250-Fe2M (Mn, Zn, Ni, Co) by Fe3 or Fe2M and H4abtc. (f) Comparison of photocatalytic activity of PCN-250-Fe3 and PCN-250-Fe2M for CO evolution. Reprinted with permission from Ref. [69]. Copyright 2020, Elsevier.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | Cu-doped NH2-MIL-125(Ti) | Cu(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 24 h | pollutant degradation | [ |
2 | Fe-doped NH2-MIL-68(In) | In(NO3)3 + Fe(NO3)3 + NH2-BDC, 125 °C, 5 h | pollutant degradation | [ |
3 | V-doped NH2-MIL-125(Ti) | VCl3 + Ti(OCH(CH3)2)4 + NH2-BDC, 120 °C, 72 h | none | [ |
4 | Nb-doped NH2-UiO-66(Zr) | NbCl5 + ZrCl4 + NH2-BDC, 120 °C, 48 h | none | [ |
5 | Ti-doped NH2-UiO-66(Zr) | NH2-UiO-66(Zr) + TiCl4(THF)2, 100 °C for 4 d | CO2 reduction, H2 evolution | [ |
6 | Hf-doped-SH-UiO-66(Zr) | ZrCl4 + HfCl4 + 2SH-BDC, 120 °C, 48 h | N2 fixation | [ |
7 | Ce/Ti-doped UiO-66(Zr) | UiO-66(Zr/Ce) + TiCl4(THF)2, 120 °C, 4 d | H2 evolution, O2 evolution | [ |
8 | Ni-doepd NH2-MIL-125(Ti) | Ni(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 20 h | CO2 reduction | [ |
9 | Al-doped MIL-100(Fe) | AlCl3 + FeCl3 + 1,3,5-benzene tricarboxylate, 150 °C, 36 h | organic syntheses | [ |
10 | Co, Ni, Zn-doped NNU-31-M | Fe2M(Co, Ni, Zn) cluster + TCA, 150 °C, 32 h | CO2 reduction coupled with H2O oxidation | [ |
11 | Mn, Zn, Ni, Co-doped PCN-250-Fe3 | Fe2M (Mn, Zn, Ni, Co) + H4abtc, 140 °C, 2 h | CO2 reduction | [ |
12 | Co-doped Cu-MOF | Cu(NO3)2 + Co(NO3)2 + TCPP, 80 °C, 24 h | N2 fixation | [ |
Table 1 Summary of metal doped MOF-based photocatalytic systems.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | Cu-doped NH2-MIL-125(Ti) | Cu(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 24 h | pollutant degradation | [ |
2 | Fe-doped NH2-MIL-68(In) | In(NO3)3 + Fe(NO3)3 + NH2-BDC, 125 °C, 5 h | pollutant degradation | [ |
3 | V-doped NH2-MIL-125(Ti) | VCl3 + Ti(OCH(CH3)2)4 + NH2-BDC, 120 °C, 72 h | none | [ |
4 | Nb-doped NH2-UiO-66(Zr) | NbCl5 + ZrCl4 + NH2-BDC, 120 °C, 48 h | none | [ |
5 | Ti-doped NH2-UiO-66(Zr) | NH2-UiO-66(Zr) + TiCl4(THF)2, 100 °C for 4 d | CO2 reduction, H2 evolution | [ |
6 | Hf-doped-SH-UiO-66(Zr) | ZrCl4 + HfCl4 + 2SH-BDC, 120 °C, 48 h | N2 fixation | [ |
7 | Ce/Ti-doped UiO-66(Zr) | UiO-66(Zr/Ce) + TiCl4(THF)2, 120 °C, 4 d | H2 evolution, O2 evolution | [ |
8 | Ni-doepd NH2-MIL-125(Ti) | Ni(NO3)2 + Ti(OC4H9)4 + NH2-BDC, 150 °C, 20 h | CO2 reduction | [ |
9 | Al-doped MIL-100(Fe) | AlCl3 + FeCl3 + 1,3,5-benzene tricarboxylate, 150 °C, 36 h | organic syntheses | [ |
10 | Co, Ni, Zn-doped NNU-31-M | Fe2M(Co, Ni, Zn) cluster + TCA, 150 °C, 32 h | CO2 reduction coupled with H2O oxidation | [ |
11 | Mn, Zn, Ni, Co-doped PCN-250-Fe3 | Fe2M (Mn, Zn, Ni, Co) + H4abtc, 140 °C, 2 h | CO2 reduction | [ |
12 | Co-doped Cu-MOF | Cu(NO3)2 + Co(NO3)2 + TCPP, 80 °C, 24 h | N2 fixation | [ |
Fig. 6. (a) UV-vis spectra of MIL-125(Ti) (a) and NH2-MIL-125(Ti) (b). (b) Proposed mechanism for the photocatalytic CO2 reduction over NH2-MIL-125(Ti) under visible light irradiation. Reprinted with permission from Ref. [75]. Copyright 2012, Wiley-VCH. Frontier electron density of unsubstituted MIL-125: (c) the valence band is composed of the bdc C 2p orbitals, making these favorable for linker-based band gap modifications; (d) the conduction band is composed of O 2p orbitals and Ti 3d orbitals, suggesting that modifications of the aromatic bdc units are unlikely to affect the CB. Reprinted with permission from Ref. [73]. Copyright 2013, American Chemical Society.
Energy | H | NH2 | NO2 | F | Cl | Br | I | OH | SH | COOH | CH3 | CF3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eabs | 4.09 | 2.74 | 3.77 | 3.83 | 3.57 | 3.42 | 2.97 | 3.02 | 2.54 | 3.43 | 3.83 | 4.03 |
ELMCT | -1.43 | -1.57 | -1.33 | -1.38 | -1.39 | -1.42 | -1.44 | -1.61 | -1.59 | -1.65 | -1.47 | -1.35 |
Table 2 Absorption energies (Eabs, in eV) and ligand-to-metal charge-transfer energies (ELMCT, in eV) of UiO-66(Ce)-X. Reprinted with permission from Ref. [84]. Copyright 2018, American Chemical Society.
Energy | H | NH2 | NO2 | F | Cl | Br | I | OH | SH | COOH | CH3 | CF3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eabs | 4.09 | 2.74 | 3.77 | 3.83 | 3.57 | 3.42 | 2.97 | 3.02 | 2.54 | 3.43 | 3.83 | 4.03 |
ELMCT | -1.43 | -1.57 | -1.33 | -1.38 | -1.39 | -1.42 | -1.44 | -1.61 | -1.59 | -1.65 | -1.47 | -1.35 |
Fig. 7. (a) Illustration showing the dark photocatalysis over MIL-125 and MIL-125 with different functional groups, MIL-125-X (X = NH2, NO2, Br). (b) Overlapping percentage and distance between electrons and holes in MIL-125 and MIL-125-X (X = NH2, NO2). Reprinted with permission from Ref. [87]. Copyright 2022, Royal Society of Chemistry. (c) Photocatalytic reduction of aqueous Cr(VI) over UiO-66-X (X = H, NH2, NO2 and Br) under simulated sunlight (320-780 nm). Reprinted with permission from Ref. [88]. Copyright 2015, Royal Society of Chemistry. Transient photocurrent response (d) and EIS Nyquist plots (e) of MIL-68(In)-X (X = H, NH2, NO2, Br). Reprinted with permission from Ref. [89]. Copyright 2018, Elsevier.
Fig. 8. (a) TEM image (scale bar: 500 nm). (b) AFM image and corresponding height profile. Reprinted with permission from Ref. [97]. Copyright 2018, Wiley-VCH. (c) Illustration for the synthesis of 2D Ln-TCPP nanosheets and the thickness- and metal-node-dependent photocatalytic activity. Reprinted with permission from Ref. [98]. Copyright 2020, Wiley-VCH. (d) Schematic of the synthesis process of Mn-TBAPy-BK (bulk) and Mn-TBAPy-NS (nanosheets) MOFs. (e) Photocatalytic H2 evolution activities of Mn-TBAPy-BK and Mn-TBAPy-NS before (left) and after (right) normalized to Pt content. Reprinted with permission from Ref. [104]. Copyright 2022, American Chemical Society.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
2 | NH2-MIL-125(Ti) | Ti(OC3H7)4) + NH2-BDC, 150 °C, 48 h | H2 production | [ |
3 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | organic syntheses | [ |
4 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | N2 fixation | [ |
5 | OH/CH3-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 150 °C, 72 h | N2 fixation | [ |
6 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | H2 production | [ |
7 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Organic syntheses | [ |
8 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
9 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | CO2 reduction | [ |
10 | NH2-MIL-101(Fe) | FeCl3 + NH2-BDC, 110 °C, 24 h | CO2 reduction | [ |
11 | NH2-MIL-53(Fe) | FeCl3 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
12 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 170 °C, 24 h | CO2 reduction | [ |
13 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 150 °C, 15 min | Cr(VI) reduction | [ |
14 | NH2/(NH2)2-MIL-125(Ti) | Ti(OC3H7)4) + NH2BDC/(NH2)2-BDC, 150 °C, 48 h | none | [ |
15 | NH2-MIL-125(Ti) | Ti-(OC3H7)4) + NH2-BDC, 110 °C, 72 h | none | [ |
16 | NH2-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 130 °C, 15 h | H2 production | [ |
17 | NO2/Br-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 130 °C, 15 h | H2 production | [ |
18 | NH2/NO2/Br-UiO-66(Zr) | ZrCl4 + NH2-BDC/NO2-BDC/Br-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
19 | NH2/NO2/Br-MIL-68(In) | In(NO3)3 + NH2-BDC/NO2-BDC/Br-BDC, 125 °C, 5 h | Cr(VI) reduction | [ |
20 | CH3/NO2/Br-UiO-66(Ce) | (NH4)2Ce(NO3)6 + CH3-BDC/NO2-BDC/Br-BDC, 100 °C, 15 min | organic syntheses | [ |
Table 3 Summary of MOF-based photocatalytic systems obtained via ligand functionalization.
No. | MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
2 | NH2-MIL-125(Ti) | Ti(OC3H7)4) + NH2-BDC, 150 °C, 48 h | H2 production | [ |
3 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | organic syntheses | [ |
4 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 150 °C, 72 h | N2 fixation | [ |
5 | OH/CH3-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 150 °C, 72 h | N2 fixation | [ |
6 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | H2 production | [ |
7 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Organic syntheses | [ |
8 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
9 | NH2-UiO-66(Zr) | ZrCl4 + NH2-BDC, 120 °C, 48 h | CO2 reduction | [ |
10 | NH2-MIL-101(Fe) | FeCl3 + NH2-BDC, 110 °C, 24 h | CO2 reduction | [ |
11 | NH2-MIL-53(Fe) | FeCl3 + NH2-BDC, 150 °C, 72 h | CO2 reduction | [ |
12 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 170 °C, 24 h | CO2 reduction | [ |
13 | NH2-MIL-88B(Fe) | FeCl3 + NH2-BDC, 150 °C, 15 min | Cr(VI) reduction | [ |
14 | NH2/(NH2)2-MIL-125(Ti) | Ti(OC3H7)4) + NH2BDC/(NH2)2-BDC, 150 °C, 48 h | none | [ |
15 | NH2-MIL-125(Ti) | Ti-(OC3H7)4) + NH2-BDC, 110 °C, 72 h | none | [ |
16 | NH2-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 130 °C, 15 h | H2 production | [ |
17 | NO2/Br-MIL-125(Ti) | MIL-125(Ti) + OH-BDC/CH3-BDC, 130 °C, 15 h | H2 production | [ |
18 | NH2/NO2/Br-UiO-66(Zr) | ZrCl4 + NH2-BDC/NO2-BDC/Br-BDC, 120 °C, 48 h | Cr(VI) reduction | [ |
19 | NH2/NO2/Br-MIL-68(In) | In(NO3)3 + NH2-BDC/NO2-BDC/Br-BDC, 125 °C, 5 h | Cr(VI) reduction | [ |
20 | CH3/NO2/Br-UiO-66(Ce) | (NH4)2Ce(NO3)6 + CH3-BDC/NO2-BDC/Br-BDC, 100 °C, 15 min | organic syntheses | [ |
Fig. 9. (a) Illustration of the synthetic route towards Pt single-atom coordinated ultrathin MOF nanosheets (PtSA-MNSs) through a surfactant-stabilized coordination strategy for photocatalytic hydrogen production. Reprinted with permission from Ref. [105]. Copyright 2019, Wiley-VCH. (b) Schematic representation showing the one-pot synthesis of PCN-134-3D and stepwise synthesis of PCN-134-2D nanosheets with accessible catalytic sites. Reprinted with permission from Ref. [106]. Copyright 2019, Wiley-VCH. (c) TEM image of g-CNQDs/PMOF. (d) Proposed mechanism of CO2 reduction over g-CNQDs/PMOF hybrids under visible-light irradiation. Reprinted with permission from Ref. [107]. Copyright 2019, American Chemical Society.
Fig. 10. (a) The fs-TA spectra (pump at 400 nm) taken at several representative probe delays for UiO-66-NH2-0 and UiO-66-NH2-100. (b) fs-TA kinetics and the global fitting results (probing in the range 580-650 nm using 8 traces with a 10-nm interval) for UiO-66-NH2-X (X = 0, 50, 100, 150, 200). (c) Comparison of photocatalytic H2 production rates and average relaxation lifetimes. Reprinted with permission from Ref. [120]. Copyright 2019, Wiley-VCH.
No. | MOF nanosheet | Method | Application | Ref |
---|---|---|---|---|
1 | Ni-BDC MOFs | Ni(NO3)2 + H2BDC, 140 °C, 12 h, exfoliation | CO2 reduction | [ |
2 | ZIF-67(Co) | Co(NO3)2 + 2-methylimidazole, room temperature, 30 min | CO2 reduction | [ |
3 | Ni3(HITP)2 MOFs | NiCl2 + HITP·HCl + NH3·H2O, 65 °C, 2 h, exfoliation | CO2 reduction | [ |
4 | Zr-porphyrinic (Ni-TCPP) MOF | ZrCl4 + Ni-TCPP, 120 °C, 24 h | organic syntheses | [ |
5 | Porphyrin-based Ln-MOF (Ln = Ce, Sm, Eu, Tb, Yb) | Ce(NO3)3/Sm(NO3)3/Sm(NO3)3/Yb(NO3)3 + HAc + H2TCPP, 10 min, microwave | organic syntheses | [ |
6 | Porphyrin-based Ti-MOF | Ti(OC4H9)4 + H2TCPP, 150 °C, 5 d | organic syntheses | [ |
7 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 120 °C, 12 h | CO2 reduction | [ |
8 | MOF-74(Ni) | Ni(CH3COO)2 + H4DOBDC, 120 °C, 12 h | organic syntheses | [ |
9 | [Co(Ni-H7TPPP)2]·8H2O MOFs | Co(CH3COO)2 + Ni-H8TPPP + HCl, exfoliation | CO2 reduction | [ |
10 | Co-MOF-Ru(tpyCOO)2 | Co(NO3)2 + [RuII(tpyCOOH)2](PF6)2, 120 °C, 24 h, exfoliation | H2 production | [ |
11 | Mn-MOF | MnCl2 + H4TBAPy, 130 °C, 72 h, exfoliation | H2 production | [ |
12 | Pt single atoms/porphyrin-based Cu-MOF | Cu(NO3)2 + PtTCPP, 80 °C, 4 h. | H2 production | [ |
13 | Photosensitizers-anchored Zr-BTB MOF | Zr-BTB nanosheets + H4TCPP, 100 °C for 12 h | organic syntheses | [ |
14 | g-CNQDs//porphyrin-based Co-MOF | Co(NO3)2 + TCPP, 150 °C, 4 h. | CO2 reduction | [ |
Table 4 Summary of ultrathin 2D MOF-based photocatalytic systems.
No. | MOF nanosheet | Method | Application | Ref |
---|---|---|---|---|
1 | Ni-BDC MOFs | Ni(NO3)2 + H2BDC, 140 °C, 12 h, exfoliation | CO2 reduction | [ |
2 | ZIF-67(Co) | Co(NO3)2 + 2-methylimidazole, room temperature, 30 min | CO2 reduction | [ |
3 | Ni3(HITP)2 MOFs | NiCl2 + HITP·HCl + NH3·H2O, 65 °C, 2 h, exfoliation | CO2 reduction | [ |
4 | Zr-porphyrinic (Ni-TCPP) MOF | ZrCl4 + Ni-TCPP, 120 °C, 24 h | organic syntheses | [ |
5 | Porphyrin-based Ln-MOF (Ln = Ce, Sm, Eu, Tb, Yb) | Ce(NO3)3/Sm(NO3)3/Sm(NO3)3/Yb(NO3)3 + HAc + H2TCPP, 10 min, microwave | organic syntheses | [ |
6 | Porphyrin-based Ti-MOF | Ti(OC4H9)4 + H2TCPP, 150 °C, 5 d | organic syntheses | [ |
7 | NH2-MIL-125(Ti) | Ti(OC4H9)4 + NH2-BDC, 120 °C, 12 h | CO2 reduction | [ |
8 | MOF-74(Ni) | Ni(CH3COO)2 + H4DOBDC, 120 °C, 12 h | organic syntheses | [ |
9 | [Co(Ni-H7TPPP)2]·8H2O MOFs | Co(CH3COO)2 + Ni-H8TPPP + HCl, exfoliation | CO2 reduction | [ |
10 | Co-MOF-Ru(tpyCOO)2 | Co(NO3)2 + [RuII(tpyCOOH)2](PF6)2, 120 °C, 24 h, exfoliation | H2 production | [ |
11 | Mn-MOF | MnCl2 + H4TBAPy, 130 °C, 72 h, exfoliation | H2 production | [ |
12 | Pt single atoms/porphyrin-based Cu-MOF | Cu(NO3)2 + PtTCPP, 80 °C, 4 h. | H2 production | [ |
13 | Photosensitizers-anchored Zr-BTB MOF | Zr-BTB nanosheets + H4TCPP, 100 °C for 12 h | organic syntheses | [ |
14 | g-CNQDs//porphyrin-based Co-MOF | Co(NO3)2 + TCPP, 150 °C, 4 h. | CO2 reduction | [ |
Fig. 11. Relationship between pKa value of defective linkers and the contents of defect and Cu1+/Cu2+ CUS in Cu-BTC framework. Reprinted with permission from Ref. [123]. Copyright 2021, Elsevier.
Fig. 12. (a) Illustration of the synthesis for defective NH2-MIL-125(Ti) via the thermal treatment. Reprinted with permission from Ref. [132]. Copyright 2021, Elsevier. (b) A plausible mechanism of linker elimination by the photothermal treatment in a water medium containing TEOA. Reprinted with permission from Ref. [133]. Copyright 2020, Elsevier. (c) Schematic illustration of the synthetic procedures for ZIF-67-MBI via SALE approach. Reprinted with permission from Ref. [135]. Copyright 2023, Elsevier.
Fig. 13. (a) Idealized process of generation of defects in UiO-66: missing linker defect and missing cluster defect. Reprinted with permission from Ref. [137]. Copyright 2017, Elsevier. (b) Illustration of the crystal structures of UiO-66-fresh, UiO-66-UV-vis, and UiO-66-PSE. Reprinted with permission from Ref. [138]. Copyright 2021, Royal Society of Chemistry. (c) Schematic illustration of varied defective structures. (d) Photoreduction CO2 to CO evolution rates over NH2-UiO-66(Zr) with different types of defects. Reprinted with permission from Ref. [139]. Copyright 2021, Elsevier.
No. | Defective MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-UiO-66(Zr) | modulation approach | H2 production | [ |
2 | Cu-BTC MOFs | mixed linker approach | H2 production, O2 production | [ |
3 | ZIF-67(Co) | mixed linker approach | H2 production | [ |
4 | NH2-MIL-125(Ti) | thermal treatment | Cr(VI) reduction | [ |
5 | NH2-MIL-125(Ti) | photo-thermal treatment | H2 production | [ |
6 | ZIF-67(Co) | SALE approach | H2 production, O2 production | [ |
7 | UiO-66(Zr) | photo treatment, SALE approach | N2 fixation | [ |
8 | NH2-MIL-125(Ti) | SALE approach | H2 production | [ |
9 | MIL-125(Ti) | SALE approach | H2O2 production | [ |
10 | NH2-UiO-66(Zr) | modulation approach, thermal treatment | CO2 reduction | [ |
11 | (SH)2-UiO-66(Zr) | thermal treatment | N2 fixation | [ |
Table 5 Summary of defect containing MOF-based photocatalytic systems.
No. | Defective MOFs | Method | Application | Ref. |
---|---|---|---|---|
1 | NH2-UiO-66(Zr) | modulation approach | H2 production | [ |
2 | Cu-BTC MOFs | mixed linker approach | H2 production, O2 production | [ |
3 | ZIF-67(Co) | mixed linker approach | H2 production | [ |
4 | NH2-MIL-125(Ti) | thermal treatment | Cr(VI) reduction | [ |
5 | NH2-MIL-125(Ti) | photo-thermal treatment | H2 production | [ |
6 | ZIF-67(Co) | SALE approach | H2 production, O2 production | [ |
7 | UiO-66(Zr) | photo treatment, SALE approach | N2 fixation | [ |
8 | NH2-MIL-125(Ti) | SALE approach | H2 production | [ |
9 | MIL-125(Ti) | SALE approach | H2O2 production | [ |
10 | NH2-UiO-66(Zr) | modulation approach, thermal treatment | CO2 reduction | [ |
11 | (SH)2-UiO-66(Zr) | thermal treatment | N2 fixation | [ |
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[6] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[7] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[8] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[9] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[10] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[11] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[12] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[13] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[14] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[15] | 余治晗, 关晨, 岳晓阳, 向全军. 碳环渗入的结晶氮化碳S型同质结及其光催化析氢[J]. 催化学报, 2023, 50(7): 361-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||