催化学报 ›› 2023, Vol. 55: 1-19.DOI: 10.1016/S1872-2067(23)64556-5

• 综述 •    下一篇

高效光催化金属有机框架(MOFs)的构筑策略

刘成a, 刘胡润卿a, 余济美a,b, 吴棱a,*(), 李朝辉a,*()   

  1. a福州大学化学学院, 能源与环境光催化国家重点实验室, 光催化研究所, 福建福州 350116
    b香港中文大学化学系, 香港新界
  • 收稿日期:2023-09-12 接受日期:2023-10-31 出版日期:2023-12-18 发布日期:2023-12-07
  • 通讯作者: *电子信箱: zhaohuili@fzu.edu.cn (李朝辉), wuling@fzu.edu.cn (吴棱).
  • 基金资助:
    国家自然科学基金(22372038);国家自然科学基金(22272026);“111计划”(D16008)

Strategies to engineer metal-organic frameworks for efficient photocatalysis

Cheng Liua, Hurunqing Liua, Jimmy C. Yua,b, Ling Wua,*(), Zhaohui Lia,*()   

  1. aResearch Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
    bDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
  • Received:2023-09-12 Accepted:2023-10-31 Online:2023-12-18 Published:2023-12-07
  • Contact: *E-mail: zhaohuili@fzu.edu.cn (Z. Li), wuling@fzu.edu.cn (L. Wu).
  • About author:Ling Wu (State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University) received his Ph.D degree in 2004 from The Chinese University of Hong Kong. His research interests currently focus on photocatalysis and new materials based on MOFs and ultrathin inorganic metal oxide nanosheets, especially revealing the relationship of the surface structure and performances at molecular level. He has coauthored more than 260 peer-reviewed papers.
    Zhaohui Li (State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University) received her Bachelor degree from Fudan University in 1990, Master degree from Fujian Institute of Research on Structure of Matter, Chinese Academy of Science in 1996, and PhD degree from National University of Singapore in 2000. She carried out postdoctoral research at University of Notre Dame (USA) from 2000 to 2002. She joined the faculty of Fuzhou University in 2003 and is currently a full professor of State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University. Her current research interest centers on the development of porous/nanostructured materials, in particular the MOFs materials, for photocatalytic applications, especially in photocatalytic organics transformations.
  • Supported by:
    National Natural Science Foundation of China(22372038);National Natural Science Foundation of China(22272026);111 Project(D16008)

摘要:

面对全球能源短缺和环境污染等问题, 发展绿色、可持续的能源来替代传统的化石能源成为迫切需求. 太阳能作为一种清洁可再生能源, 其有效转化与利用受到了广泛关注. 光催化将太阳能转化为化学能, 其核心是新型高效的光催化材料. 金属有机框架材料(MOFs), 是一类由金属或金属节点与多齿有机配体相互连接而成的微介孔材料, 具有独特的组成结构和特性, 有望成为有应用前景的光催化材料. 目前已有一些关于MOFs基光催化的综述, 但考虑到该领域在过去几年迅速发展, 为了研发高效的MOFs基光催化材料, 非常有必要对已经报道的用于提高MOFs基光催化剂性能的策略进行总结.

本综述重点总结了已报道的通过调控MOFs基材料的组成和结构的策略来提升其光催化性能的最新研究进展. 首先, 简要介绍了MOFs基材料的结构特点及其在光催化领域应用的优势, 阐述了MOFs基材料光催化的基本原理, 提出了影响其光催化性能的关键因素, 包括光吸收能力、光生载流子的分离和迁移以及催化活性位点. 其次, 阐明不同结构调控策略通过优化关键因素进而提高光催化性能的原理, 具体包括MOFs基材料中金属掺杂、配体功能化、超薄二维材料构筑以及缺陷工程策略. 然后, 通过总结典型案例, 详细讨论了上述策略如何通过调控MOFs基材料的组成和结构来优化关键因素, 从而提高MOFs基材料的光催化性能. 最后, 针对MOFs基材料光催化所面临的机遇、挑战及其发展趋势提出展望: (1) 影响MOFs基光催化剂效率的因素是多方面的, 因此将不同策略相结合有利于更好地提高MOFs基光催化剂的性能. 除了本文总结的四种构筑策略, 最近其它一些关于提升MOFs基材料光催化性能的结构调控策略也有零星报道, 如微环境调控、晶面工程等, 也值得进一步关注. (2) 与无机半导体光催化剂相比, MOFs基材料的结构稳定性较差, 因此应特别注意其在光催化条件下的稳定性, 特别是MOFs基材料在水中的反应体系. (3) 先进原位表征技术的发展和理论研究的深化对于高效MOF基光催化系统的设计及机理研究至关重要. (4) MOFs基材料的多功能性可以使其作为光诱导一锅多步反应的多功能催化材料, 应大力开展研究.

综上, 本文系统地总结了通过调控MOFs基材料的组成和结构从而达到提升其光催化性能的不同策略, 并就MOFs基材料光催化所面临的机遇、挑战及其发展趋势提出展望. 希望本文能够为深入了解MOFs基光催化体系中组成-结构-性能关系以及从原子水平来设计研发高效的MOFs基光催化剂提供参考.

关键词: 金属有机框架, 光催化, 金属掺杂, 配体功能化, 超薄二维MOFs, 缺陷工程

Abstract:

Photocatalysis, a promising technology to convert solar energy to chemical energy, is expected to relieve the global energy shortage and environmental pollution and therefore has attracted widespread recent research attention. Metal-organic frameworks (MOFs), a class of micro-mesoporous hybrid material constructed from metal or metal nodes interconnected with multi-dentated organic linkers, have recently been demonstrated to be promising photocatalysts for a variety of reactions relevant to environmental and energy concerns due to their unique structure and characteristics. Considering that MOF-based photocatalysis burgeoned rapidly during the past several years, and with an aim to develop more efficient MOF-based photocatalytic materials, it is still necessary to summarize the strategies already reported to improve the performance of MOF-based photocatalytic materials, even though several excellent reviews on MOF-based photocatalysis have already been published. In this review, four structural engineering strategies to improve the efficiency of MOF-based photocatalysis have been summarized. These strategies include metal doping, ligand functionalization, the fabrication of ultrathin 2D MOFs, and defect engineering. These methods aim to enhance light absorption, improve charge separation and transportation, and create more catalytic active sites. Personal opinions on the opportunities, challenges, and developing trends of MOF-based photocatalysis were addressed. This review aims to provide guidance for the rational development of advanced MOF-based photocatalysts by elucidating the inherent relationship between their structural properties and catalytic activity.

Key words: Metal-organic framework, Photocatalysis, Metal doping, Ligand functionalization, Ultrathin 2D MOFs, Defect engineering