催化学报 ›› 2024, Vol. 57: 105-113.DOI: 10.1016/S1872-2067(23)64584-X

• 论文 • 上一篇    下一篇

锐钛矿型TiO2负载Ni单原子用于催化丙烷脱氢

张倩a,b, 江训柱a,b, 苏杨a, 赵阳c, 乔波涛a,*()   

  1. a中国科学院大连化学物理研究所, 中国科学院应用催化科技重点实验室, 辽宁大连 116023
    b中国科学院大学, 北京 100049
    c中国科学院大连化学物理研究所, 大连洁净能源国家实验室, 辽宁大连 116023
  • 收稿日期:2023-09-28 接受日期:2023-12-18 出版日期:2024-02-18 发布日期:2024-02-10
  • 通讯作者: * 电子信箱: bqiao@dicp.ac.cn (乔波涛).
  • 基金资助:
    国家重点研发计划(2021YFA1500503);国家自然科学基金项目(21961142006);国家自然科学基金项目(21972135);国家自然科学基金单原子催化基础研究中心(22388102);中国科学院青年基础研究项目(YSBR-022)

Catalytic propane dehydrogenation by anatase supported Ni single-atom catalysts

Qian Zhanga,b, Xunzhu Jianga,b, Yang Sua, Yang Zhaoc, Botao Qiaoa,*()   

  1. aCAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
    cDalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2023-09-28 Accepted:2023-12-18 Online:2024-02-18 Published:2024-02-10
  • Contact: * E-mail: bqiao@dicp.ac.cn (B. Qiao).
  • Supported by:
    National Key Research and Development program of China(2021YFA1500503);National Natural Science Foundation of China(21961142006);National Natural Science Foundation of China(21972135);National Natural Science Foundation of China(22388102);CAS Project for Young Scientists in Basic Research(YSBR-022)

摘要:

丙烯市场需求日益增长, 丙烷脱氢(PDH)被认为是最有前途的丙烯定向生产技术之一. 作为PDH商业催化剂, 贵金属Pt的高成本和CrOx基催化剂的毒性使它们的发展受到限制. 镍基催化剂因具有廉价、环保的特点, 在多种催化反应的应用中引起了研究人员的广泛关注. 然而, 镍在高温烷烃脱氢反应中的应用较少, 目前, 保持反应中镍(II)物种的稳定存在仍然是镍基PDH催化剂的主要挑战. 近来, 单原子催化剂(SAC)在烷烃碳氢键活化过程中表现出优异的催化性能, 具有较好的丙烯选择性和出色的稳定性. 当镍以单个原子的形式分散在载体上时, 它更有可能以带正电的状态存在, 但金属单原子的稳定存在是具有挑战性的.

本文以锐钛矿型的二氧化钛为载体, 采用等体积浸渍法分别制备了0.05 wt%载量的单个原子分散的催化剂(Ni SAC, Ni1/A-TiO2)和5 wt%载量的纳米颗粒(NP)催化剂(NiNP/A-TiO2). 结合球差电镜、原位漫反射傅里叶变换红外光谱和X射线吸收光谱等表征结果表明, Ni SAC催化剂主要含有单个Ni原子, 以Ni(II)价态孤立地分散在载体上, 而NiNP/A-TiO2催化剂中的Ni物种主要以纳米粒子(1 ± 0.2 nm)的形式存在. 在580 °C的PDH反应中, Ni1/A-TiO2催化剂表现出较好的本征活性和丙烯选择性, 而且比相应的Ni NPs催化剂具有更好的抗积炭稳定性, 在Ni1/A-TiO2上得到的丙烯产率约为1.96 molC3H6 gNi-1 h-1, 超过NiNP/A-TiO2样品(0.03 molC3H6 gNi-1 h-1)的65倍, Ni SAC催化剂的丙烯时空收率(STYC3H6)约为0.2 kg h-1 kgcat-1, 与文献报道的大部分非贵金属催化剂STY值相当(0.02-0.3 kg h-1 kgcat-1). 还原后的TiO2载体因具有丰富的氧空位(OVs)和配位不饱和的Ti3+表现出一定的活性, 而Ni SAC得到了更高的丙烷转化率, 但Ni单原子的引入并没有增加OVs和Ti3+的浓度, Ni单原子催化剂的活化能低于纯载体, 说明两者的活性位不同. 此外, 在还原条件下, 由于Ni NPs与TiO2载体之间的强相互作用, Ni NPs位点被TiOx覆盖层(~2 nm)包裹, 从而显示出较差的反应活性.

综上所述, 本文报道了Ni单原子催化剂在丙烷直接脱氢反应中比相应的Ni NP催化剂表现出更好的反应性能, 体现了具有孤立活性位点的单原子催化剂在丙烷脱氢反应中的优势, 为今后探究可用于丙烷脱氢反应的单原子催化剂的制备和应用提供参考.

关键词: 丙烷脱氢, 单原子催化剂, 原子利用率, 丙烯选择性, 稳定性

Abstract:

With the increasing production of propane from shale gas and the growing demand for propylene, propane dehydrogenation (PDH) has gained significant attention as a promising route for the on-purpose production of propylene. As a cheap yet efficient catalyst, Ni-based catalysts have attracted interest because of its ability to activate alkane. Single-atom catalysts (SACs) can maximize the metal atom utilization. Here, we demonstrate that anatase TiO2 supported Ni SAC (Ni1/A-TiO2) exhibits not only superior intrinsic activity and propylene selectivity but also much better stability than the corresponding Ni nanoparticle (NP) catalyst (NiNP/A-TiO2) in PDH reaction at 580 °C. The rate of propylene production on Ni1/A-TiO2 is about 1.96 molC3H6 gNi-1 h-1, about 65 times higher than that of NiNP/A-TiO2 sample (0.03 molC3H6 gNi-1 h-1). In combination of high-angle annular dark-field scanning transmission electron microscopy, in-situ diffuse reflectance infrared Fourier transform spectra, in-situ X-ray photoelectron spectroscopy and X-ray absorption spectroscopy characterizations, we confirm that the Ni SAC mainly contains individual Ni atom singly dispersed on the support in positive Ni (II) valence state. In addition, as a result of strong metal-support interaction (SMSI) between Ni NP and TiO2 carrier under reduced conditions, the Ni NPs sites are encapsulated by TiOx overlayer (~2 nm thick) thus display poor reaction performance.

Key words: Propane dehydrogenation, Single-atom catalysts, Metal atom utilization, Propylene selectivity, Stability