催化学报 ›› 2024, Vol. 57: 114-122.DOI: 10.1016/S1872-2067(23)64586-3

• 论文 • 上一篇    下一篇

电荷分离和转移调控光催化剂稳定的Pickering乳液用于光-酶偶联催化

刘嘉立a,c, 戴慧聪b, 刘鑫a,c, 任亦起a,c, 王茂弟a,c, 杨启华b,*()   

  1. a中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连 116023
    b浙江师范大学化学与材料科学学院, 先进催化材料教育部重点实验室, 固体表面反应化学省重点实验室, 浙江金华 321004
    c中国科学院大学, 北京 100049
  • 收稿日期:2023-10-06 接受日期:2023-12-20 出版日期:2024-02-18 发布日期:2024-02-10
  • 通讯作者: * 电子信箱: qhyang@zjnu.cn (杨启华).
  • 基金资助:
    国家自然科学基金(22272164);国家自然科学基金(21972134);国家自然科学基金(22332002);浙江省创新创业领军人才引进项目(2022R01007)

Pickering emulsion stabilized with charge separation and transfer modulated photocatalyst for enzyme-photo-coupled catalysis

Jiali Liua,c, Huicong Daib, Xin Liua,c, Yiqi Rena,c, Maodi Wanga,c, Qihua Yangb,*()   

  1. aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    bKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    cUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-10-06 Accepted:2023-12-20 Online:2024-02-18 Published:2024-02-10
  • Contact: * E-mail: qhyang@zjnu.cn (Q. Yang).
  • Supported by:
    National Natural Science Foundation of China(22272164);National Natural Science Foundation of China(21972134);National Natural Science Foundation of China(22332002);Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2022R01007)

摘要:

人类社会可持续发展面临的能源紧缺和环境污染等问题迫切需要化工生产向绿色、低碳转型. 酶催化反应因具有高活性、高选择性、专一性和低能耗等优点, 在化工和制药行业得到了广泛应用. 其中, 氧化还原酶催化反应是还原醇类、胺类、酮类、酸类和无机底物的有效方法, 该类反应通常需要采用还原型辅酶NAD(P)(H)作为还原剂, 而NAD(P)(H)的昂贵价格严重制约了酶催化反应的工业化发展. 受自然界中光合作用启发, 光催化辅酶再生技术通过将酶催化与光催化技术耦合, 旨在常温常压的温和反应条件下利用太阳能实现化学品的高效、绿色合成. 迄今为止, 虽然已有多种类型的光催化剂被用于光催化NAD(P)H再生, 但电荷分离效率低、电子/质子转移效率低、有机底物在水溶液中的溶解度低以及酶失活等仍是光-酶偶联系统亟待解决的问题. 针对酶失活的问题, 研究人员通过Pickering乳液催化技术利用固体颗粒直接乳化两相体系, 进而构建高效的生物催化反应体系, 提高催化反应效率. Pickering乳液中固体乳化剂吸附在水油界面形成的稳固空间壳层不仅可以将酶限域, 而且可以像在细胞中一样为酶提供合适的微环境和足够的自由度. 另外, Pickering乳液的高反应界面也可以解决底物在反应相中溶解度低的问题, 实现类似细胞的功能和长期连续流动的生物催化, 是构建仿生微反应器的理想平台.

本文采用电子传递介质固载化界面活性复合光催化剂为固体乳化剂, ADH和NAD+为生物催化单元, 开发了一种基于Pickering乳液的人工光-酶偶联体系. 针对光敏剂中电荷分离和转移以及光敏剂向NAD(P)H的电子转移效率低等问题, 光催化体系采用溶胶凝胶法制备了具有异质结结构的共价聚合物-氧化钛复合材料光催化剂. 共价聚合物和氧化钛之间的高界面面积有效地提高了电荷分离效率, 共价聚合物含量优化后的光催化剂在可见光下NADH再生的TOF值可达5.5 mmol·g-1·h-1, 是对应纳米共价聚合物与无定形氧化钛物理混合物的27.5倍. 随后进一步将电子传递介质[Cp*Rh(bpy)H2O]2+(简称M)通过嫁接法固载到光催化剂上, 电子传递距离的缩短和场效应有效促进了电荷分离以及光生电子从光催化剂到电子传递介质的传递, 同时解决了电子传递介质回收繁琐和酶失活的问题. 得到的光催化剂在可见光下催化NADH再生反应的TOF值为2.4 mmol·g-1·h-1, 远高于其对应的物理混合物. 最后分别以长碳链硅烷修饰后具有界面活性的光催化剂为固体乳化剂, 辅酶、酶以及牺牲剂为水相, 正己烷及底物正丁醛为油相制备了光催化反应与酶催化反应偶联的Pickering乳液人工光-酶偶联体系. 可见光下Pickering乳液有效催化还原正丁醛, 在6 h内累积生成了16.1 mmol·L-1的丁醇, 相当于NADH再生循环14次.

综上, 本文以制备具有异质结结构的高效复合光催化剂为切入点, 理性设计出了高效Pickering乳液光-酶偶联体系, 为构建高效的光-酶偶联体系, 缓解能源和环境危机、实现碳减排提供了一种有效策略.

关键词: 光催化, NADH再生, 聚合物, 电子传递介质, Pickering乳液

Abstract:

Biocatalytic reduction is extensively employed in chemical and pharmaceutical industries due to its notable advantages including high activity, selectivity and mild reaction conditions, however, the stoichiometric use of the expensive NADH (reduced form of nicotinamide adenine dinucleotide) hinders its widespread application. Despite the persisting challenges of low charge separation efficiency and limited solubility of organic substrates in aqueous phase, in situ photocatalytic NADH regeneration remains a promising solution. Herein, we report the construction of an enzyme-photo-coupled catalytic system in Pickering emulsion droplet, which was stabilized by a charge separation and transfer modulated photocatalyst. The photocatalyst integrated with visible light driven conjugated polymer, TiO2 and electron mediator greatly enhanced the cascade electron transfer from photocatalyst to NAD+. Consequently, NADH production rate over the integrated photocatalyst reaches as high as 2.4 mmol·g-1·h-1 under visible light irradiation, 12 folds higher than the corresponding physical mixture. Furthermore, the enzyme-photo-coupled catalytic system was constructed with alcohol dehydrogenase/NAD+ confined in the emulsion droplet and photocatalyst assembled at the oil-water interface. The photoactive emulsion continuously catalyzed the n-butyaldehyde reduction to accumulate 16.1 mmol·L-1 butanol, equivalent to 14 cycles for NADH regeneration under visible light irradiation. The primary result demonstrates the potential application prospect of Pickering emulsion in enzyme-photo-coupled catalysis due to the facilitated charge transfer from photocatalyst to NAD+ and fast mass diffusion attributed to the large interfacial area of water and oil.

Key words: Photocatalysis, NADH regeneration, Polymer, Electron mediator, Pickering emulsion