催化学报 ›› 2024, Vol. 61: 1-36.DOI: 10.1016/S1872-2067(24)60006-9

• 综述 •    下一篇

密度泛函理论在光催化中的普遍应用

杜仕文, 章福祥*()   

  1. 中国科学院大连化学物理研究所, 催化基础国家重点实验室, 洁净能源国家实验室, 能源材料化学协同创新中心, 辽宁大连 116023
  • 收稿日期:2024-01-27 接受日期:2024-03-10 出版日期:2024-06-18 发布日期:2024-06-20
  • 通讯作者: * 电子信箱: fxzhang@dicp.ac.cn (章福祥).
  • 基金资助:
    国家自然科学基金(22332005);国家自然科学基金(21925206);中国科学院国际合作伙伴计划(121421KYSB20190025);大连市高层次人才创新支持计划(2020RD06)

General applications of density functional theory in photocatalysis

Shiwen Du, Fuxiang Zhang*()   

  1. State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
  • Received:2024-01-27 Accepted:2024-03-10 Online:2024-06-18 Published:2024-06-20
  • Contact: * E-mail: fxzhang@dicp.ac.cn (F. Zhang).
  • About author:Fuxiang Zhang is a full professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. He got his B.S. (1999) and Ph.D. (2004) and then worked as a faculty member at Nankai University. He began to pursue his postdoctoral research at the University of Pierre & Marie Curie in 2007. One year later, he transferred to the University of Tokyo. From 2011 to now, he has been working at Dalian Institute of Chemical Physics, Chinese Academy of Sciences. His research focuses on development of novel photocatalytic materials with wide visible light utilization and construction of efficient artificial photosynthesis systems.
  • Supported by:
    National Natural Science Foundation of China(22332005);National Natural Science Foundation of China(21925206);International Partnership Program of Chinese Academy of Sciences(121421KYSB20190025);Dalian supports high-level talent innovation and entrepreneurship projects(2020RD06)

摘要:

在低碳发展的背景下, 开发利用清洁无污染的太阳能对满足未来日益增长的能源需求至关重要. 半导体光催化技术可将太阳能转化为化学能, 为可再生能源的发展提供了重要支持. 因此, 深入理解光催化剂与光催化活性之间的内在关联, 对于优化和提升光催化效率至关重要. 尽管科研人员在设计开发用于光催化反应的新材料方面付出了巨大努力, 但对半导体的内在性质、表面活性位点和催化反应机理之间的深层次联系, 仍缺乏充分的理解和认识. 基于密度泛函理论(DFT)的第一性原理计算是揭示材料内禀电子结构性质和反应过程能量变化的重要工具, 正逐渐获得研究者的广泛关注. 并且, 随着计算方法的不断优化, 该领域也取得了显著的进步.
本文通过系统梳理国内外代表性研究工作, 深入探讨了DFT计算在光催化领域中的广泛应用. 首先, 总结了DFT计算在光催化领域中的六大优势: (1) 预测光催化材料的电子结构, 如能带结构、能带间隙和能级; (2) 预测表面反应的吸附位点、吸附能等变化; (3) 在原子水平上揭示电荷转移过程, 包括电子和空穴的运动; (4) 阐明光催化剂与底物之间的相互作用; (5) 预测光催化材料中空位、间隙和掺杂等缺陷的形成及其影响; (6) 阐明光催化反应的机理细节, 包括中间物种、过渡态和反应途径等. 接着, 简要概述了常用于第一性原理计算的软件和计算方法, 并特别关注了如何利用不同策略来纠正传统DFT方法对半导体电子结构特性的不适当估计. 随后, 分析了基于DFT计算的半导体电子和能量特性的典型研究案例, 如能带结构、态密度、电荷分布、功函数、形成能和吸附自由能等. 此外, 还详细阐述了半导体催化剂在多种太阳能驱动反应中的基本应用, 包括析氢反应、析氧反应、氧还原反应、CO2还原反应和氮还原反应等. 最后, 指出了DFT计算在光催化研究中的机遇与挑战, 并展望了未来可能的发展方向.
综上, 本文系统综述了DFT计算在光催化领域中的广泛应用, 旨在深入理解光催化反应中“组成-结构-功能”之间的关系, 并为未来开发设计用于太阳能到化学能催化转化的高效稳定催化剂提供参考.

关键词: 光催化, 密度泛函理论, 第一性原理计算, 电子结构, 能量性质

Abstract:

The conversion of solar energy to chemical energies by virtue of semiconductor photocatalysis has shown great significance in sustaining future energy demands, and have a deep understanding of the relationship between photocatalyst and photocatalytic activity is essential. Density functional theory (DFT) calculations are becoming increasingly important for revealing the intrinsic electronic structure properties of materials and energy properties of reactions, which has been greatly developed with the development of computational methods. In this review, the applications of DFT calculations in photocatalysis are summarized and exemplified by various representative investigations in the up-to-date reports. To specify, we show how to collect, analyse and utilize the informations on photocatalysts and photocatalytic reactions with the help of the DFT calculations, such as electronic structures, surface catalytic sites, catalytic activities, possible reaction mechanisms, etc. Our discussion is intended to provide an overview on applications of the current theoretical calculations in the field of photocatalysis for a better understanding of the composition-structure-function relationships, and also to guide future experiments and computations toward the understanding and development of novel solar-energy-conversion catalysts.

Key words: Photocatalysis, Density functional theory, First-principles calculation, Electronic structure, Energy property