催化学报 ›› 2024, Vol. 61: 111-134.DOI: 10.1016/S1872-2067(23)64635-2
收稿日期:
2023-12-27
接受日期:
2024-02-27
出版日期:
2024-06-18
发布日期:
2024-06-20
通讯作者:
* 电子信箱: 基金资助:
Received:
2023-12-27
Accepted:
2024-02-27
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: About author:
Yiming He (School of Physics and Electronic Information Engineering, Zhejiang Normal University) received his B.S. degree from Zhejiang Normal University (China) in 2000, and Ph.D. degree from Xiamen University in 2006. He carried out postdoctoral research at Fujian Institute of Research on the Structure of Material in Chinese Academy of Sciences (China) from 2007 to 2009. Since then, he has been a faculty member of the Department of Materials Science and Engineering at Zhejiang Normal University. His research mainly focuses on photocatalysis and piezocatalysis, especially on designing new catalysts for N2 fixation and pollutant degradation aimed at environmental remediation. He has published more than 140 peer-reviewed papers.
Supported by:
摘要:
压电催化技术是一种新兴的催化方法, 能够有效地将清洁、丰富的机械能(如水流动能、潮汐能和风能)转化为化学能, 在化学催化领域展现出显著潜力, 为环境修复和能源管理提供可持续的解决方案. 金属钛酸盐因其良好的压电响应、环保特性和成本效益, 在压电催化领域备受关注. 然而, 压电催化活性的不足限制了其实际应用. 为克服这一挑战, 提高机械能响应效率和减少能量转换过程中的损失成为关键. 研究人员通常从两个核心策略出发: 一是优化压电性能, 二是调控载流子传输. 深入理解这些策略在提高压电催化活性中的核心作用, 对于设计高效压电催化剂并推动压电催化技术发展具有重要意义.
本文系统地总结了金属钛酸盐的分类、合成方法和设计策略. 首先, 根据其在压电催化中的应用, 将金属钛酸盐分为单金属钙钛矿钛酸盐、多金属钙钛矿钛酸盐和层状类钙钛矿钛酸盐, 并从结构角度揭示了其压电特性的起源. 其次, 概述了金属钛酸盐的主要制备方法, 包括水热法、固态反应法、熔盐法和静电纺丝法, 并从提升催化性能角度比较了它们的优缺点. 在金属钛酸盐的设计策略部分, 探讨了构建准同型相界、应变工程、居里点控制、外场诱导极化和定向晶体生长等方法对改善压电性能的可行性. 特别是, 构建准同型相界和采用外场诱导极化, 可以分别降低极化旋转的能垒和诱导宏观极化, 在提升金属钛酸盐压电催化性能方面表现出显著效果. 此外, 还强调了助催化剂负载、碳材修饰和半导体异质结构在促进载流子分离中的重要作用. 其中, 空间分离的助剂修饰能够较大程度地提高载流子的分离效率, 进而显著增强压电催化性能. 最后, 本文对基于金属钛酸盐的压电催化剂的技术发展进行了展望, 旨在推动压电催化剂的合理设计和实际应用. 具体建议包括: (1) 规范压电催化性能评价体系, 以实现不同系统间催化剂性能的统一、合理评价; (2) 综合评估影响压电催化的因素, 寻求最优解, 并加强多种策略的耦合设计; (3) 加强有限元模拟和密度泛函理论等理论支撑, 开发应用原位技术, 以深入探究压电效应在催化过程中的具体贡献, 加深对压电催化机理的理解; (4) 发展基于低速搅拌、水冲洗、机械刷等微弱动力的压电催化技术, 并设计对低频机械能敏感的新型催化剂, 以适应自然界的能量条件; (5) 研究宏观支撑的压电催化剂设计, 以提高在应力条件下的稳定性, 同时增强可持续利用性; (6) 耦合其他先进的氧化工艺, 以加速活性物质的生产.
综上, 本文聚焦环境修复和能源应用, 深入分析了从压电特性改善和载流子运输调节两个角度出发的多种策略在提升金属钛酸盐压电催化性能中的关键作用, 并对该领域的未来发展趋势和面临的挑战进行了展望. 本文旨在为高效压电催化剂的设计提供参考和借鉴.
王凯琪, 何益明. 金属钛酸盐基压电催化剂的最新进展: 改善压电性能和调节载流子输运以提高催化性能[J]. 催化学报, 2024, 61: 111-134.
Kaiqi Wang, Yiming He. Recent advances in metal titanate-based piezocatalysts: Enhancing catalytic performance through improved piezoelectric properties and regulated carrier transport[J]. Chinese Journal of Catalysis, 2024, 61: 111-134.
Material | Stress source | Catalytic application | Ref. |
---|---|---|---|
ZnO/TiO2 | thermal stress | degradation of MO and MB | [ |
CdS | water stirring | H2O2 evolution | [ |
ZnO | mechanical brush/sliding | degradation of MB | [ |
(Ba,Ca)TiO3 | water flushing | degradation of congo red | [ |
Bi4NbO8X (X = Cl, Br) | ultrasonic vibration | production of reactive oxygen species | [ |
Table 1 Some representative works of piezocatalysis based on different stress sources.
Material | Stress source | Catalytic application | Ref. |
---|---|---|---|
ZnO/TiO2 | thermal stress | degradation of MO and MB | [ |
CdS | water stirring | H2O2 evolution | [ |
ZnO | mechanical brush/sliding | degradation of MB | [ |
(Ba,Ca)TiO3 | water flushing | degradation of congo red | [ |
Bi4NbO8X (X = Cl, Br) | ultrasonic vibration | production of reactive oxygen species | [ |
Fig. 2. (a) Crystallographic structure of R3c ZnSnO3. Reprinted with permission from Ref. [38]. Copyright 2019, John Wiley and Sons. (b) Structure of Pca21 Bi2WO6 unit cell and the spontaneous polarization along different axes. Reprinted with permission from Ref. [39]. Copyright 2021, the Royal Society of Chemistry. (c) Crystal structure of BiO(IO3) and net macroscopic polarization direction towards the c-axis. Reprinted with permission from Ref. [40]. Copyright 2011, American Chemical Society. (d) Crystallographic structure of wurtzite ZnS and schematics of the piezoelectric effect. Reprinted with permission from Ref. [41]. Copyright 2015, American Chemical Society.
Fig. 3. (a) Deviations in the TiO6 crystal structure. (b) Piezoelectric potential of Bi4Ti3O12 simulated by applying an ultrasonic stress of 10 MPa along with the x-, y-, and z-axes. Reprinted with permission from Ref. [42]. Copyright 2023, Elsevier. (c) Publications on piezocatalysis of MTs from 2013 to 2023. (d) Comparison of the publication numbers for different types of piezocatalysts. All dates were collected from the Web of Science using the key words “piezocatalysis” and “Corresponding chemical formulas”.
Fig. 5. (a) Cubic structure of BaTiO3 and tetragonal structure of BaTiO3 with spontaneous polarization along [001]. Reprinted with permission from Ref. [56]. Copyright 2020, American Chemical Society. (b) Structure evolution of PbTiO3 with enhanced tetragonality. Reprinted with permission from Ref. [57]. Copyright 2020, John Wiley and Sons.
Fig. 7. SEM images of BaTiO3 nanofibers calcined at different temperatures: (a) 550, (b) 600, (c) 650, (d) 700, (e) 800, and (f) 900 °C. Reprinted with permission from Ref. [98]. Copyright 2021, Elsevier.
Fig. 8. (a) STEM image of the 10 nm BaTiO3 with multiphase coexistence. (b) Landau free energy profiles for the simultaneous coexistence of three ferroelectric phases and (c) it’s 2D projection. Reprinted with permission from Ref. [108]. Copyright 2019, John Wiley and Sons. (d) PFM phase hysteresis loop and displacement butterfly curves of BNKT samples. (e) The piezocatalytic performance of BNKT samples for RhB degradation and (f) the corresponding kinetic rate constants. (g) H2 evolution rates over BNKT samples of various compositions under 40 kHz ultrasonic vibration. Reprinted with permission from Ref. [110]. Copyright 2023, the Royal Society of Chemistry.
Fig. 9. Variation of TiO6 octahedron structures before (a) and after (b and c) Cr3+ and Nb5+ doping. Reprinted with permission from Ref. [113]. Copyright 2022, Elsevier. (d) H2 and O2 evolution rates of the blank sample, BaTiO3, and b-BaTiO3 under 40 kHz ultrasonic vibration, respectively. (e) The recycling piezocatalytic H2 and O2 evolution tests of b-BaTiO3. (f) TEM image of b-BaTiO3. Scale bar = 200 nm. (g) Geometric phase analysis of out-plane strain εyy covering a pore structure. (h) The distribution of potential in a b-BaTiO3 nanoparticle based on COMSOL simulation. Scale bar = 200 nm. Reprinted with permission from Ref. [117]. Copyright 2021, John Wiley and Sons.
Fig. 10. The hysteresis loop of BTS nanoparticles at temperature of 25 °C (a), 35 °C (b) and 45 °C (c). (d) Schematic diagram of spontaneous polarization versus temperature. Piezocatalytic activities of BTS nanoparticles for the removal of RhB (e) and MO (f) under different conditions. Reprinted with permission from Ref. [127]. Copyright 2021, Elsevier.
Fig. 11. (a) The schematic of piezocatalysis induced by electric poling treatment. (b) Decomposition ratios and (c) the corresponding kinetic rate constants of NBT poled with different poling fields. Reprinted with permission from Ref. [130]. Copyright 2021, Elsevier. (d) ESR spectra of ·OH and ·O2? over different piezocatalysts. Reprinted with permission from Ref. [131]. Copyright 2020, Springer Nature.
Fig. 12. (a) Orbital projected electronic band structure and projected density of states of BCTZ. The red color corresponds to O 2p states, while the green color represents Ti 3d states. VBM and CBM orbital arrangements are illustrated. (b) Schematic diagram illustrating the band structure of BCTZ. Reprinted with permission from Ref. [139]. Copyright 2023, John Wiley and Sons. (c) Schematic diagram of domain motion with and without OVs. (d) Calculated d33 at different OVs concentrations. Reprinted with permission from Ref. [140]. Copyright 2022, Elsevier.
Fig. 13. (a) Mechanism of the Ag/BaTiO3 hybrid piezocatalyst during CH3SH removal. Reprinted with permission from Ref. [144]. Copyright 2022, American Chemical Society. (b) Schematic diagram of the modulated Schottky barrier between Pt and PbTiO3 by the directional piezoelectric field. Reprinted with permission from Ref. [145]. Copyright 2023, the Royal Society of Chemistry. (c) The schematics of major radical-involved reactions occurring on BaTiO3-Ag surfaces. Reprinted with permission from Ref. [150]. Copyright 2020, Elsevier. (d) piezo-photocatalytic performance of AuCu/PbTiO3/MnOx and reference samples (① none, ② PbTiO3, ③ PbTiO3/AuCu, ④ PbTiO3/MnOx, ⑤ AuCu/PbTiO3/MnOx, ⑥ PbTiO3/AuCu-MnOx) in (d) CO production and (e) O2 evolution. Free-energy diagrams for (f) the reduction of CO2 to CO on PbTiO3{001} and AuCu(111) surfaces, and (g) the oxidation of H2O to O2 on PbTiO3{001} and MnOx surfaces. (h) The charge separation mechanism of AuCu/PbTiO3/MnOx. Reprinted with permission from Ref. [151]. Copyright 2023, American Chemical Society.
Fig. 14. (a) Reaction kinetics rate constants in the removal of CBZ by different systems. (b) Cycle tests of CBZ removal in CNTs/BaTiO3-PMS system. Reprinted with permission from Ref. [158]. Copyright 2022, Elsevier. (c) Piezocatalytic efficiency of Cu-EDTA over 180 min under different piezocatalytic conditions. (d) The surface potential of different samples under 1 nN stress. Reprinted with permission from Ref. [159]. Copyright 2019, American Chemical Society.
Fig. 15. (a) Schematic diagram of piezo-photocatalysis for the PbTiO3/CdS composite. Reprinted with permission from Ref. [166]. Copyright 2020, Elsevier. (b) Magnified XRD patterns of the NBT/NBT4 composite. (c) Piezocatalytic H2 evolution of NBT/NBT4 composite in different waters. (d) First-principles DFT simulations of band structure of NBT/NBT4 heterojunction. Reprinted with permission from Ref. [68]. Copyright 2023, Elsevier.
Material | Synthetic method | Morphology | Strategy | Reaction condition | Catalytic performance | Increase multiple | Ref. |
---|---|---|---|---|---|---|---|
Pollutant removal | |||||||
(Na0.8K0.2)0.5Bi0.5TiO3 | hydrothermal | nanoparticles | MPB | 400 W ultrasound | MB, 0.01695 min‒1 | 3.51 | [ |
Bi0.5(Na1−xKx)0.5TiO3 | hydrothermal | nanoparticles | MPB | 80 W ultrasound | RhB, 0.065 min‒1 | 3.7 | [ |
Ba0.5Sr0.5TiO3 | hydrothermal | nanoparticles | strain engineering | 100 W ultrasound | CBZ, 0.106 min‒1 | 1.86 | [ |
V-doped SrTiO3 | electrospinning | nanofibers | strain engineering | 150 W ultrasound | bisphenol A, 0.1758 min‒1 | 2.74 | [ |
OVs-SrBi4Ti4O15 | molten salt | nanoflakes | strain engineering | 300 W Xe lamp, 100 W ultrasound | tetracycline, 0.058 min‒1 | 7.25 | [ |
BaTi0.89Sn0.11O3 | hydrothermal | nanoparticles | Tc operation | 120 W ultrasound | RhB, 0.21423 min‒1; MO, 0.03797 min‒1 | 1.48; 1.39 | [ |
BaZr0.02Ti0.98O3 | solid-state | nanoparticles | electric polarization | 70 W ultrasound | RhB, 0.00535 min‒1; MO, 0.00407 min‒1 | 7.15; 6.30 | [ |
BaTiO3 | hydrothermal | nanoparticles | electric polarization | 80 W ultrasound | indigo carmine, 0.059 min‒1; RhB, 0.0075 min‒1 | 29.5; 7.23 | [ |
Na0.5Bi0.5TiO3 | solid-state | micronparticles | electric polarization | 150 W ultrasound | RhB, 0.00556 min‒1 | 8.18 | [ |
CoOx/Bi4Ti3O12 | molten salt | nanosheets | co-catalyst loading | 120 W ultrasound | MO, 0.01817 min‒1 | 2.4 | [ |
NiO/BaTiO3 | hydrothermal | prismatic blocks | co-catalyst loading | 120 W ultrasound | RhB, 0.04017 min‒1 | 6.3 | [ |
SrBi4Ti4O15/Ag2O | molten salt | nanosheets | co-catalyst loading | 300 W Xe lamp, 180 W ultrasound | RhB, 0.5492 min‒1 | 7.7 | [ |
Ag/BaTiO3 | hydrothermal | nanocubes | co-catalyst loading | 120 W ultrasound | bisphenol A, 0.0091 min‒1 | 6.5 | [ |
RuO2/BaTiO3/Pt | hydrothermal | nanoparticles | co-catalyst loading | 110 W ultrasound | tricyclazole, 0.032 min-1 | 3.11 | [ |
Ag/BaTiO3/Co3O4 | molten salt | polyhedrons | co-catalyst loading | 120 W ultrasound | MO, 0.0539 min‒1 | 4.94 | [ |
BaTiO3/C | hydrothermal | nanofibers | carbon modification | 150 W ultrasound | RhB, 0.04901 min‒1 | 2.52 | [ |
CNTs/BaTiO3 | hydrothermal | nanoparticles | carbon modification | 1000 rpm stirring | CBZ, 0.02071 min‒1 | 6.7 | [ |
BaTiO3@Gr | hydrothermal | nanofibers | carbon modification | 200 W ultrasound | Cu-EDTA, 100% for 180 min | — | [ |
BaTiO3/g-C3N4 | hydrothermal | nanofibers | heterostructures | 120 W ultrasound | RhB, 82.0% for 210 min | 1.44 | [ |
BaTiO3/SrTiO3 | electrospinning | nanofibers | heterostructures | 30 W UV lamp, 300 W ultrasound | RhB, 97.4% for 30 min | 2.2 | [173] |
H2 production | |||||||
10 nm-size BaTiO3 | hydrothermal | nanoparticles | MPB | ultrasound | 655 µmol g‒1 h‒1 | — | [ |
Cr3+-Nb5+ doped Bi4Ti3O12 | molten salt | nanosheets | strain engineering | 300 W Xe lamp, ultrasound | 696 µmol g‒1 h‒1 | 3.7 | [ |
Porous BaTiO3 | hydrothermal | nanoparticles | strain engineering | ultrasound | 159 µmol g‒1 h‒1 | 130 | [ |
Pt/PbTiO3 | hydrothermal | nanoplates | co-catalyst loading | 100 W ultrasound | 360 µmol g‒1 h‒1 | 1.6 | [ |
PbTiO3/CdS | hydrothermal | nanoplates | heterostructures | 300 W Xe lamp, 100 W ultrasound | 849 µmol g‒1 h‒1 | 2.2 | [ |
Na0.5Bi0.5TiO3/ Na0.5Bi4.5Ti4O15 | hydrothermal | nanoparticles | heterostructures | 400 W ultrasound | 128 µmol g‒1 h‒1 | — | [ |
Other energy synthesis | |||||||
0.5Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 | solid-state | nanoparticles | MPB | 180 W ultrasound | H2O2, 692 µmol g‒1 h‒1 | 8.7 | [ |
OVs-BaTiO3 | hydrothermal | nanoparticles | strain engineering | 300 W Xe lamp, 200 W ultrasound | NH3, 106.7 µmol g‒1 h‒1 | 4.39 | [ |
AuCu/PbTiO3/MnOx | hydrothermal | nanoplates | co-catalyst loading | 300 W Xe lamp, 120 W ultrasound | CO, 23.9 µmol g‒1 h‒1; O2, 2.6 µmol g‒1 h‒1 | 4.6; 6.3 | [ |
Table 2 Summary of promoting effect of different strategies.
Material | Synthetic method | Morphology | Strategy | Reaction condition | Catalytic performance | Increase multiple | Ref. |
---|---|---|---|---|---|---|---|
Pollutant removal | |||||||
(Na0.8K0.2)0.5Bi0.5TiO3 | hydrothermal | nanoparticles | MPB | 400 W ultrasound | MB, 0.01695 min‒1 | 3.51 | [ |
Bi0.5(Na1−xKx)0.5TiO3 | hydrothermal | nanoparticles | MPB | 80 W ultrasound | RhB, 0.065 min‒1 | 3.7 | [ |
Ba0.5Sr0.5TiO3 | hydrothermal | nanoparticles | strain engineering | 100 W ultrasound | CBZ, 0.106 min‒1 | 1.86 | [ |
V-doped SrTiO3 | electrospinning | nanofibers | strain engineering | 150 W ultrasound | bisphenol A, 0.1758 min‒1 | 2.74 | [ |
OVs-SrBi4Ti4O15 | molten salt | nanoflakes | strain engineering | 300 W Xe lamp, 100 W ultrasound | tetracycline, 0.058 min‒1 | 7.25 | [ |
BaTi0.89Sn0.11O3 | hydrothermal | nanoparticles | Tc operation | 120 W ultrasound | RhB, 0.21423 min‒1; MO, 0.03797 min‒1 | 1.48; 1.39 | [ |
BaZr0.02Ti0.98O3 | solid-state | nanoparticles | electric polarization | 70 W ultrasound | RhB, 0.00535 min‒1; MO, 0.00407 min‒1 | 7.15; 6.30 | [ |
BaTiO3 | hydrothermal | nanoparticles | electric polarization | 80 W ultrasound | indigo carmine, 0.059 min‒1; RhB, 0.0075 min‒1 | 29.5; 7.23 | [ |
Na0.5Bi0.5TiO3 | solid-state | micronparticles | electric polarization | 150 W ultrasound | RhB, 0.00556 min‒1 | 8.18 | [ |
CoOx/Bi4Ti3O12 | molten salt | nanosheets | co-catalyst loading | 120 W ultrasound | MO, 0.01817 min‒1 | 2.4 | [ |
NiO/BaTiO3 | hydrothermal | prismatic blocks | co-catalyst loading | 120 W ultrasound | RhB, 0.04017 min‒1 | 6.3 | [ |
SrBi4Ti4O15/Ag2O | molten salt | nanosheets | co-catalyst loading | 300 W Xe lamp, 180 W ultrasound | RhB, 0.5492 min‒1 | 7.7 | [ |
Ag/BaTiO3 | hydrothermal | nanocubes | co-catalyst loading | 120 W ultrasound | bisphenol A, 0.0091 min‒1 | 6.5 | [ |
RuO2/BaTiO3/Pt | hydrothermal | nanoparticles | co-catalyst loading | 110 W ultrasound | tricyclazole, 0.032 min-1 | 3.11 | [ |
Ag/BaTiO3/Co3O4 | molten salt | polyhedrons | co-catalyst loading | 120 W ultrasound | MO, 0.0539 min‒1 | 4.94 | [ |
BaTiO3/C | hydrothermal | nanofibers | carbon modification | 150 W ultrasound | RhB, 0.04901 min‒1 | 2.52 | [ |
CNTs/BaTiO3 | hydrothermal | nanoparticles | carbon modification | 1000 rpm stirring | CBZ, 0.02071 min‒1 | 6.7 | [ |
BaTiO3@Gr | hydrothermal | nanofibers | carbon modification | 200 W ultrasound | Cu-EDTA, 100% for 180 min | — | [ |
BaTiO3/g-C3N4 | hydrothermal | nanofibers | heterostructures | 120 W ultrasound | RhB, 82.0% for 210 min | 1.44 | [ |
BaTiO3/SrTiO3 | electrospinning | nanofibers | heterostructures | 30 W UV lamp, 300 W ultrasound | RhB, 97.4% for 30 min | 2.2 | [173] |
H2 production | |||||||
10 nm-size BaTiO3 | hydrothermal | nanoparticles | MPB | ultrasound | 655 µmol g‒1 h‒1 | — | [ |
Cr3+-Nb5+ doped Bi4Ti3O12 | molten salt | nanosheets | strain engineering | 300 W Xe lamp, ultrasound | 696 µmol g‒1 h‒1 | 3.7 | [ |
Porous BaTiO3 | hydrothermal | nanoparticles | strain engineering | ultrasound | 159 µmol g‒1 h‒1 | 130 | [ |
Pt/PbTiO3 | hydrothermal | nanoplates | co-catalyst loading | 100 W ultrasound | 360 µmol g‒1 h‒1 | 1.6 | [ |
PbTiO3/CdS | hydrothermal | nanoplates | heterostructures | 300 W Xe lamp, 100 W ultrasound | 849 µmol g‒1 h‒1 | 2.2 | [ |
Na0.5Bi0.5TiO3/ Na0.5Bi4.5Ti4O15 | hydrothermal | nanoparticles | heterostructures | 400 W ultrasound | 128 µmol g‒1 h‒1 | — | [ |
Other energy synthesis | |||||||
0.5Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 | solid-state | nanoparticles | MPB | 180 W ultrasound | H2O2, 692 µmol g‒1 h‒1 | 8.7 | [ |
OVs-BaTiO3 | hydrothermal | nanoparticles | strain engineering | 300 W Xe lamp, 200 W ultrasound | NH3, 106.7 µmol g‒1 h‒1 | 4.39 | [ |
AuCu/PbTiO3/MnOx | hydrothermal | nanoplates | co-catalyst loading | 300 W Xe lamp, 120 W ultrasound | CO, 23.9 µmol g‒1 h‒1; O2, 2.6 µmol g‒1 h‒1 | 4.6; 6.3 | [ |
|
[1] | 蔡豪, 陈芳, 胡程, 葛伟怡, 李彤, 张晓磊, 黄洪伟. 富含氧空位的Bi4O5Br2超薄纳米片用于高效压电催化生成过氧化氢[J]. 催化学报, 2024, 57(2): 123-132. |
[2] | 王晶晶, 胡程, 张以河, 黄洪伟. CdS压电和应变敏感度调控工程用于压电催化产氢[J]. 催化学报, 2022, 43(5): 1277-1285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||