催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1277-1285.DOI: 10.1016/S1872-2067(21)63976-1

• 论文 • 上一篇    下一篇

CdS压电和应变敏感度调控工程用于压电催化产氢

王晶晶, 胡程, 张以河, 黄洪伟()   

  1. 中国地质大学(北京)材料科学与工程学院, 矿物岩石材料国家专业实验室, 非金属矿物与固废资源材料化利用北京市重点实验室,北京100083
  • 收稿日期:2021-09-29 接受日期:2021-11-19 出版日期:2022-05-18 发布日期:2022-03-23
  • 通讯作者: 黄洪伟
  • 基金资助:
    国家自然科学基金(51972288);国家自然科学基金(51672258);中央高校基础研究经费(2652018287)

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution

Jingjing Wang, Cheng Hu, Yihe Zhang, Hongwei Huang()   

  1. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
  • Received:2021-09-29 Accepted:2021-11-19 Online:2022-05-18 Published:2022-03-23
  • Contact: Hongwei Huang
  • Supported by:
    National Natural Science Foundation of China(51972288);National Natural Science Foundation of China(51672258);Fundamental Research Funds for the Central Universities(2652018287)

摘要:

压电催化产氢成为当前实现机械能的采集和利用以及全天候可持续能源高效产出的极具潜力的研究方向. CdS半导体催化剂已被广泛用于光催化水裂解制氢研究. 六方相CdS为空间群P63mc和点群6 mm的非中心对称晶体结构, 这赋予其具有压电效应特征, 在压电极化场下有望实现高效的载流子分离和催化效率的提升. 目前, 关于CdS的压电特性及结构与压电性和压电催化活性间的内在联系和相互影响尚不清楚.

本文设计、构建CdS球和不同长度的CdS纳米棒两种拓扑结构, 并进行深入研究. 球状CdS采用水热法制得, 不同长度的一维CdS纳米棒通过调控溶剂热反应时间得到. 超声辅助催化产氢性能测试发现, 在优化超声功率150 W的超声振动刺激下, CdS纳米棒的压电催化产氢性能达到157 μmol g-1 h-1, 较球状CdS催化剂的压电催化活性提高近2.8倍. 整个超声辅助产氢体系无共催化剂的添加. 然而, 对于棒状CdS催化剂压电催化性能增强的原因并不清楚. 扫描电子显微镜结果表明, CdS纳米棒和CdS球在微观形貌和晶粒尺寸表现出显著差异; X射线光电子能谱表明, 二者表面组成和化学态没有明显区别. 在此基础上, 采用压电响应力显微镜(PFM)、有限元分析方法和压电化学测试等表征进一步研究了CdS纳米棒和CdS球在压电催化分解水产氢反应中性能差异的原因.

PFM结果表明, 在压力作用下棒状CdS表现出较强的压电电势和大的相位翻转角度. COMSOL模拟计算进一步验证了棒状CdS和球状CdS受力刺激下形成压电电场强度和变形能力的差别. 通过对球状CdS和不同长度的CdS纳米棒的比表面积测试分析得出, 压电电势和表面活性位点间的平衡对最大化压电催化效率至关重要. 压电化学测试结果表明, CdS纳米棒强的压电电势和显著的形变对压电催化氢气析出过程中载流子分离和迁移具有提升作用. 在超声刺激下, CdS纳米棒比CdS球表现出大的电流响应和小的电化学阻值, 这为CdS纳米棒高效的载流子分离和利用提供证据. 由此可以推断, CdS纳米棒增强的压电催化活性归因于其大的压电系数和较强的机械能捕获能力, 从而进一步诱导其在机械应力下产生更大的压电电势和更有效的载流子分离和运输, 最终得到更好的压电催化性能. 综上, 本研究为清洁能源发展和利用以及先进压电材料发展提供参考.

关键词: CdS, 压电催化, 产氢, 一维纳米棒, 电荷分离

Abstract:

Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day. Hexagonal CdS, as an established semiconductor photocatalyst, has been widely investigated for splitting water into H2, while its piezocatalytic performance has attracted less attention, and the relationship between the structure and piezocatalytic activity remains unclear. Herein, two types of CdS nanostructures, namely CdS nanorods and CdS nanospheres, were prepared to probe the above-mentioned issues. Under ultrasonic vibration, the CdS nanorods afforded a superior piezocatalytic H2 evolution rate of 157 μmol g-1 h-1 in the absence of any co-catalyst, which is nearly 2.8 times that of the CdS nanospheres. The higher piezocatalytic activity of the CdS nanorods is derived from their larger piezoelectric coefficient and stronger mechanical energy harvesting capability, affording a greater piezoelectric potential and more efficient separation and transfer of intrinsic charge carriers, as elucidated through piezoelectric response force microscopy, finite element method, and piezoelectrochemical tests. This study provides a new concept for the design of efficient piezocatalytic materials for converting mechanical energy into sustainable energy via microstructure regulation.

Key words: CdS, Piezocatalysis, Hydrogen evolution, One-dimensional nanorod, Charge separation