催化学报 ›› 2024, Vol. 61: 97-110.DOI: 10.1016/S1872-2067(24)60014-8
刘高雄a, 陈润东a, 夏兵全a,*(), 吴珍b, 刘善堂a,*(
), 冉景润c,*(
)
收稿日期:
2024-01-31
接受日期:
2024-03-24
出版日期:
2024-06-18
发布日期:
2024-06-20
通讯作者:
* 电子信箱: 基金资助:
Gaoxiong Liua, Rundong Chena, Bingquan Xiaa,*(), Zhen Wub, Shantang Liua,*(
), Amin Talebian-Kiakalaiehc, Jingrun Ranc,*(
)
Received:
2024-01-31
Accepted:
2024-03-24
Online:
2024-06-18
Published:
2024-06-20
Contact:
* E-mail: About author:
Bingquan Xia (School of Chemistry and Environmental Engineering, Wuhan Institute of Technology) obtained his Ph.D. degree in 2022 from the University of Adelaide in Australia. Following the completion of his doctoral studies, he joined the faculty of the School of Chemistry and Environmental Engineering at Wuhan Institute of Technology. His research is centered around the development of novel materials for photocatalysis and electrocatalysis. Specifically, he is particularly interested in the field of photocatalysis, with a focus on the conversion of solar energy into green fuels and valuable chemicals. With a strong dedication to advancing scientific knowledge, he has published 25 peer-reviewed papers.Supported by:
摘要:
过氧化氢(H2O2)广泛用于废水处理、燃料电池及漂白剂等领域. 尽管传统生产H2O2的蒽醌法拥有成熟的技术基础, 但存在能耗高、爆炸风险、毒气排放以及环境污染等问题. 太阳能驱动的光催化合成H2O2作为一种绿色、无污染、可持续的能源转换技术, 展现出替代传统的蒽醌工艺的巨大潜力. 共价有机框架(COFs)作为光催化合成H2O2的新兴催化剂, 以可调节的能带结构、宽光吸收范围及高光催化效率在克服传统无机光催化剂低转化效率方面显示出优势. 通过合理的结构设计调整氧还原反应(ORR)途径, COFs可提升光催化合成H2O2的产率, 并可同时促进高附加值化学品的合成.
本文综述了基于COFs的光催化剂在H2O2合成及选择性氧化高价值化学品领域的最新研究进展. 首先, 详细讨论了COFs基光催化剂在合成H2O2过程中的三种主要途径: (1) 单步两电子氧还原反应; (2) 两步单电子氧还原反应; (3) 双通道反应机制. 同时, 强调了牺牲剂对光催化合成H2O2和高附加值化学品的影响. 其次, 总结了多种新颖的COF基光催化剂合成策略, 包括静电自组装、原位合成、蒸汽辅助工艺、孔隙划分和界面聚合等, 这些策略在光催化生产H2O2及高价值化学品方面发挥了关键作用. 接下来, 深入探讨了提升COFs在H2O2和高价值化学品生成效率方面的策略, 主要包括单原子生长、异质结构建、活性位点调节和催化环境控制等四种修饰策略. 这些策略涉及材料的贵金属改性、材料相互作用促进、官能团设计以及反应界面的亲疏水性质, 旨在从整体上推动COFs在光催化的可持续性和增值化学合成方向的研究与创新. 最后, 提出了COFs基光催化剂面临的挑战与当前进展. 其中, COFs的薄膜制备和多相体系构建对于解决催化剂的分离与回收问题至关重要. 同时, 强调了机理表征在提升COF基光催化剂整体性能中的重要性.
综上, COFs基光催化剂在合成设计、反应途径的调控以及牺牲剂的引入等方面都会对合成H2O2和高值化学品产生重要影响. 本文旨在为构建COF基光催化剂提升整体光催化性能提供一定的参考和借鉴.
刘高雄, 陈润东, 夏兵全, 吴珍, 刘善堂, 冉景润. 共价有机框架基光催化剂合成过氧化氢和高价值化学品的最新进展[J]. 催化学报, 2024, 61: 97-110.
Gaoxiong Liu, Rundong Chen, Bingquan Xia, Zhen Wu, Shantang Liu, Amin Talebian-Kiakalaieh, Jingrun Ran. Synthesis of H2O2 and high-value chemicals by covalent organic framework-based photocatalysts[J]. Chinese Journal of Catalysis, 2024, 61: 97-110.
Fig. 3. The O2 adsorption site and thickness on (a) and (b). (c) The energy required to adsorb O2 on the optimal photocatalyst locations. (d) The energetic landscape for the ORR on the surfaces of photocatalysts. (e) The photocatalytic production of H2O2 through the ORR route. Reproduced with permission from Ref. [50]. Copyright 2023, Wiley.
Fig. 4. (a,b) Photocatalyst charge differential maps. (c) The scheme of the solar-driven H2O2 generation over photocatalysts. Reproduced with permission from Ref. [30]. Copyright 2023, Science China Press.
Fig. 5. Representation of the photocatalyst structure, with yellow balls representing S atoms and blue balls representing N atoms. (a) Diagram illustrating different reaction paths for H2O2 production. (b) Charge distribution diagram of the photocatalyst, where yellow and blue regions correspond to the accumulation and depletion of thiazole charge on BT and exhaustion of S-atom charge on TTF. (c) Adsorption of *OOH and *OH on the S site of BT and S site of TTF, respectively. Reproduced with permission from Ref. [51]. Copyright 2023, Wiley.
Fig. 8. (a) Graphic illustrating the variation in charge density within fluorinated TAPT-TFPA@Pd ICs due to the limited availability of Pd atoms (Yellow and blue regions represent electron accumulation and depletion, respectively). (b) Illustration of the mechanism of photocatalytic H2O2 production over TAPT-TFPA@Pd ICs. Reproduced with permission from Ref. [71]. Copyright 2023, American Chemical Society.
Fig. 9. The photocatalytic process that leads to the production of H2O2 and the oxidation of FA has been examined for its underlying mechanisms. Reproduced with permission from Ref. [80]. Copyright 2023, Elsevier.
Fig. 10. (a) Schematic depiction focusing on the different active sites and their photocatalytic mechanism for generating H2O2. Reproduced with permission from Ref. [83]. Copyright 2023, Wiley. (b) Schematic representation of the photo-driven quasi-topological conversion at nitrogen cation motifs. Reproduced with permission from Ref. [35]. Copyright 2023, Wiley.
Fig. 11. Photochemical reactions of O2 on superhydrophobic interfaces have been examined. Reproduced with permission from Ref. [85]. Copyright 2022, Elsevier.
Upgrading strategy | Photocatalysts | Eg (eV) | Light source | Reaction solution | H2O2 production (μmol g‒1 h‒1) | Reaction Route | Ref. |
---|---|---|---|---|---|---|---|
Single-atom growth | TAPT-TFPA COFs@Pd | 2.54 | Xe lamp | H2O/EtOH | 2143 | Ⅰ | [ |
Mn/AB-C3N4 | 2.60 | 427 nm | H2O/KOH | 2230 | Ⅱ | [ | |
NiSAPs-PuCN | 2.51 | >420 nm | H2O | 342.2 | Ⅰ | [ | |
Sb-SAPC15 | 2.63 | >420 nm | H2O | 12.4 | Ⅱ | [ | |
Hetero-junction construction | ZnO/TpPa-Cl | 1.95 | AM 1.5, 45 mW cm−2 | H2O/EtOH | 2443 | Ⅰ | [ |
TiO2/BTTA | 2.53 | 350-780 nm | H2O/FFA | 740 | Ⅰ | [ | |
ZnIn2S4/TpPa-1 | 2.1 | 400-780 nm | H2O/EtOH | 258 | Ⅰ | [ | |
TpPaCl2/BiOBr | 2.09 | ≥420 nm | H2O/EtOH | 3749 | Ⅱ | [ | |
Active site regulation | TF50-COF | 2.54 | >420 nm | H2O/BA | 1739 | Ⅰ | [ |
COF-TTA-TTTA | 2.04 | >420 nm | H2O/EtOH | 4347 | Ⅱ & Ⅲ | [ | |
TAPB-PDA-OH | 2.1 | >420 nm | H2O/EtOH | 2117.6 | Ⅰ | [ | |
PMCR-1 | 2.71 | 400-700 nm | H2O/BA | 5500 | Ⅰ | [ | |
4PE-N-S COF | 1.79 | 420-700 nm | H2O/EtOH | 2237 | Ⅰ | [ | |
HEP-TAPT-COF | 2.3 | >420 nm | H2O | 1750 | Ⅱ & Ⅲ | [ | |
EBA-COF | 2.41 | 420 nm | H2O/BA | 2550 | Ⅰ | [ | |
Cu3-BT-COF | 1.92 | Xe lamp | H2O/FFA | 1168.75 | Ⅰ | [ | |
Microenvironment control | Py-Da-COF | 2.53 | >420 nm | H2O/EtOH | 3670 | Ⅰ & Ⅲ | [ |
TPB-DMTP-COF | 2.3 | >420 nm | H2O | 2882 | Ⅰ | [ | |
TD-COF | 2.5 | 400-700 nm | H2O | 4060 | Ⅱ & Ⅳ | [ | |
Na-CvCN@MFGP | 2.56 | Xe lamp | H2O/EtOH | 375 | Ⅱ | [ |
Table 1 Summary photocatalysts performance for H2O2 production.
Upgrading strategy | Photocatalysts | Eg (eV) | Light source | Reaction solution | H2O2 production (μmol g‒1 h‒1) | Reaction Route | Ref. |
---|---|---|---|---|---|---|---|
Single-atom growth | TAPT-TFPA COFs@Pd | 2.54 | Xe lamp | H2O/EtOH | 2143 | Ⅰ | [ |
Mn/AB-C3N4 | 2.60 | 427 nm | H2O/KOH | 2230 | Ⅱ | [ | |
NiSAPs-PuCN | 2.51 | >420 nm | H2O | 342.2 | Ⅰ | [ | |
Sb-SAPC15 | 2.63 | >420 nm | H2O | 12.4 | Ⅱ | [ | |
Hetero-junction construction | ZnO/TpPa-Cl | 1.95 | AM 1.5, 45 mW cm−2 | H2O/EtOH | 2443 | Ⅰ | [ |
TiO2/BTTA | 2.53 | 350-780 nm | H2O/FFA | 740 | Ⅰ | [ | |
ZnIn2S4/TpPa-1 | 2.1 | 400-780 nm | H2O/EtOH | 258 | Ⅰ | [ | |
TpPaCl2/BiOBr | 2.09 | ≥420 nm | H2O/EtOH | 3749 | Ⅱ | [ | |
Active site regulation | TF50-COF | 2.54 | >420 nm | H2O/BA | 1739 | Ⅰ | [ |
COF-TTA-TTTA | 2.04 | >420 nm | H2O/EtOH | 4347 | Ⅱ & Ⅲ | [ | |
TAPB-PDA-OH | 2.1 | >420 nm | H2O/EtOH | 2117.6 | Ⅰ | [ | |
PMCR-1 | 2.71 | 400-700 nm | H2O/BA | 5500 | Ⅰ | [ | |
4PE-N-S COF | 1.79 | 420-700 nm | H2O/EtOH | 2237 | Ⅰ | [ | |
HEP-TAPT-COF | 2.3 | >420 nm | H2O | 1750 | Ⅱ & Ⅲ | [ | |
EBA-COF | 2.41 | 420 nm | H2O/BA | 2550 | Ⅰ | [ | |
Cu3-BT-COF | 1.92 | Xe lamp | H2O/FFA | 1168.75 | Ⅰ | [ | |
Microenvironment control | Py-Da-COF | 2.53 | >420 nm | H2O/EtOH | 3670 | Ⅰ & Ⅲ | [ |
TPB-DMTP-COF | 2.3 | >420 nm | H2O | 2882 | Ⅰ | [ | |
TD-COF | 2.5 | 400-700 nm | H2O | 4060 | Ⅱ & Ⅳ | [ | |
Na-CvCN@MFGP | 2.56 | Xe lamp | H2O/EtOH | 375 | Ⅱ | [ |
|
[1] | 杜仕文, 章福祥. 密度泛函理论在光催化中的普遍应用[J]. 催化学报, 2024, 61(6): 1-36. |
[2] | 任梦真, 刘天府, 董媛媛, 李正, 杨嘉新, 刁振恒, 吕红金, 杨国昱. CdS纳米棒/含Ni多钨氧酸盐光催化苯硫酚氧化偶联耦合制氢[J]. 催化学报, 2024, 61(6): 312-321. |
[3] | 陈朝辉, 邓军, 郑燕梅, 张文君, 董琳, 陈祖鹏. 通过调节碳自由基的反应活性调控偶联反应产物和羰基化合物的选择性合成[J]. 催化学报, 2024, 61(6): 135-143. |
[4] | 邵韵航, 张亚宁, 陈潮锋, 窦帅, 娄阳, 董玉明, 朱永法, 潘成思. 通过晶面调控产生强内建电场以提高卟啉光催化剂的H2O2生成速率[J]. 催化学报, 2024, 61(6): 205-214. |
[5] | 杜晨宇, 盛剑平, 钟丰忆, 何烨, 孙艳娟, 董帆. 光催化二氧化碳还原制多碳产物的先进光催化剂设计与机制: 现状与挑战[J]. 催化学报, 2024, 60(5): 25-41. |
[6] | 黄浩铭, 林清清, 牛青, 宁江淇, 李留义, 毕进红, 于岩. 基于共价有机框架非金属位点的光催化CO2还原[J]. 催化学报, 2024, 60(5): 201-208. |
[7] | 房文健, 严嘉玮, 韦之栋, 刘军营, 郭伟琦, 江治, 上官文峰. 光解水制氢催化剂的掺杂改性[J]. 催化学报, 2024, 60(5): 1-24. |
[8] | Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. 氮掺杂对环境空气中TiO2纳米催化剂抗甲醛光催化矿化的影响[J]. 催化学报, 2024, 59(4): 303-323. |
[9] | 李洋, 王雄, 胡星盛, 胡彪, 田昇, 王丙昊, 陈浪, 陈广辉, 彭超, 申升, 尹双凤. 可循环Pd/TiO2构筑及其紫外光催化苯甲醛与碘苯偶联合成二苯甲酮[J]. 催化学报, 2024, 59(4): 159-168. |
[10] | 周恒, 张蕊, 岳彩燕, 吴旭, 严琼, 王昊, 张衡, 马天翼. 构筑可持续生物炭修饰钨酸铋复合光催化剂实现基于增强电荷转移效应的高效水净化[J]. 催化学报, 2024, 59(4): 169-184. |
[11] | 孟令辉, 赵晨, 楚弘宇, 李渝航, 付会芬, 王鹏, 王崇臣, 黄洪伟. g-C3N4/PCN-224“壳-核”结构异质结压电-光催化协同高效制备过氧化氢[J]. 催化学报, 2024, 59(4): 346-359. |
[12] | 张宝龙, 刘方璇, 孙彬, 高婷婷, 周国伟. ZnIn2S4修饰TiO2的分级S型异质结用于促进光催化析氢[J]. 催化学报, 2024, 59(4): 334-345. |
[13] | 崔恩田, 鲁玉莲, 江吉周, 王定胜, 翟天佑. 超高选择性CO2光还原为乙醇的CuNi异核双原子催化剂的精准设计[J]. 催化学报, 2024, 59(4): 126-136. |
[14] | 白浚贤, 沈荣晨, 梁桂杰, 秦朝朝, 许第发, 胡浩斌, 李鑫. 噻吩基二维共价有机框架中的拓扑结构诱导局部电荷极化促进光催化制氢[J]. 催化学报, 2024, 59(4): 225-236. |
[15] | 杨婷婷, 王彬, 朱剑豪, 夏杰祥, 李华明. 自牺牲型金属有机框架衍生In2S3多级孔结构纳米材料强化光催化性能[J]. 催化学报, 2024, 59(4): 204-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||