催化学报 ›› 2024, Vol. 65: 89-102.DOI: 10.1016/S1872-2067(24)60110-5
刘奔a,†, 中川善直a,b,*(), 藪下瑞帆a,b, 冨重圭一a,b,c,*(
)
收稿日期:
2024-06-25
接受日期:
2024-07-29
出版日期:
2024-10-18
发布日期:
2024-10-15
通讯作者:
*电子信箱: yoshinao@erec.che.tohoku.ac.jp (中川善直),
tomishige@tohoku.ac.jp (冨重圭一).
作者简介:
†目前地址: 复旦大学化学系, 上海200433, 中国.
Ben Liua,†, Yoshinao Nakagawaa,b,*(), Mizuho Yabushitaa,b, Keiichi Tomishigea,b,c,*(
)
Received:
2024-06-25
Accepted:
2024-07-29
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: yoshinao@erec.che.tohoku.ac.jp (Y. Nakagawa), tomishige@tohoku.ac.jp (K. Tomishige).
About author:
†Present address: Department of Chemistry, Fudan University, Shanghai 200433, China.
摘要:
贵金属基双金属催化剂已被系统研究并广泛应用于区域选择性C‒O键氢解进行生物质转化等领域, 而进一步采用贵金属改性非常有应用前景, 亟待深入研究. 本文发现, 在所筛选的贵金属(Ru, Pt, Rh, Pd, Au和Ag)中, Ru是1,2-丁二醇(1,2-BuD)末端C‒O氢解为2-丁醇(2-BuOH)的Ir-Fe/BN(Ir = 5 wt%, Fe/Ir = 0.25)催化剂的有效改性剂. 微量的Ru(0.5 wt%)改性后, 即可高选择性获得2-BuOH(>60%), 活性提升约1倍, 提升Ru负载量(3 wt%)可继续提高活性, 但2-BuOH选择性较低, 并产生了末端C-C键断裂的副产物. 最优催化剂(Ru(0.5)-Ir-Fe/BN)可重复在1,2-BuD氢解反应中使用至少4次, 2-BuOH收率适中(47%). 结果还表明,添加0.5 wt%的Ru促进了Ir-Fe/BN上各种醇的氢解反应. 结合催化反应和表征结果, 研究了Ru物种在三金属催化剂中的促进机理. Ru(0.5)-Ir-Fe/BN中Ru物种与Ir形成合金, 并在与BN表面的界面上富集, 在Ru-Ir-Fe合金中Ru和Fe之间不需要直接相互作用. Ir-Fe合金表面的Ir-Fe界面可能是1,2-二醇通过直接C‒O氢解制备仲醇的活性位点, 其中Ru改性的Ir活化H2形成氢化物类物质. 由于与Ir物种的直接相互作用和较少暴露于底物, 大大抑制了Ru物种断裂C-C键的活性. Ru负载量较高时(3 wt%)导致形成富Ru三金属合金, 该合金进一步充当C‒C键断裂的活性位.
刘奔, 中川善直, 藪下瑞帆, 冨重圭一. Ir-Fe/BN催化剂上Ru物种在1,2-二醇氢解制仲醇反应中的促进作用[J]. 催化学报, 2024, 65: 89-102.
Ben Liu, Yoshinao Nakagawa, Mizuho Yabushita, Keiichi Tomishige. Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols[J]. Chinese Journal of Catalysis, 2024, 65: 89-102.
Entry | Catalyst | Conv. /% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir/BN | 0.6 | — | — | — | — | — | — | — | — | 102 |
2 a | 0.4 wt% FeOx/BN | <0.5 | — | — | — | — | — | — | — | — | 103 |
3 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 | Pt(0.5)-Ir-Fe/BN | 13.9 | 5.1 | 61.9 | 17.3 | 9.8 | 0.0 | 0.0 | 0.0 | 5.8 | 92 |
6 | Rh(0.5)-Ir-Fe/BN | 11.9 | 4.5 | 55.5 | 15.4 | 15.9 | 0.0 | 0.3 | 0.0 | 8.5 | 95 |
7 | Pd(0.5)-Ir-Fe/BN | 7.1 | 6.7 | 66.4 | 16.4 | 6.8 | 0.0 | 0.0 | 0.0 | 3.7 | 96 |
8 | Au(0.5)-Ir-Fe/BN | 9.7 | 4.9 | 70.1 | 16.3 | 5.4 | 0.0 | 0.0 | 0.0 | 3.2 | 92 |
9 | Ag(0.5)-Ir-Fe/BN | 10.8 | 5.2 | 68.5 | 17.9 | 4.6 | 0.0 | 0.8 | 0.0 | 3.0 | 92 |
10 | Ru(0.5)/BN | 41.5 | 3.2 | 5.3 | 6.8 | 32.2 | 0.0 | 5.3 | 15.3 | 31.8 | 89 |
11 | Ru(0.5)-Fe/BN | <0.5 | — | — | — | — | — | — | — | — | 100 |
12 | Ru(0.5)-Ir/BN | 3.1 | 18.2 | 37.1 | 16.0 | 12.9 | 0.0 | 3.0 | 2.8 | 10.0 | 100 |
13 b | Physical mixture | 35.3 | 5.9 | 42.0 | 15.4 | 20.6 | 0.0 | 2.7 | 1.9 | 11.5 | 92 |
Table 1 1,2-BuD hydrogenolysis over M(0.5)-Ir-Fe/BN (M (Ru, Pt, Rh, Pd, Au and Ag) = 0.5 wt%, Ir = 5 wt%, Fe = 0 or 0.4 wt%) catalysts.
Entry | Catalyst | Conv. /% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir/BN | 0.6 | — | — | — | — | — | — | — | — | 102 |
2 a | 0.4 wt% FeOx/BN | <0.5 | — | — | — | — | — | — | — | — | 103 |
3 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 | Pt(0.5)-Ir-Fe/BN | 13.9 | 5.1 | 61.9 | 17.3 | 9.8 | 0.0 | 0.0 | 0.0 | 5.8 | 92 |
6 | Rh(0.5)-Ir-Fe/BN | 11.9 | 4.5 | 55.5 | 15.4 | 15.9 | 0.0 | 0.3 | 0.0 | 8.5 | 95 |
7 | Pd(0.5)-Ir-Fe/BN | 7.1 | 6.7 | 66.4 | 16.4 | 6.8 | 0.0 | 0.0 | 0.0 | 3.7 | 96 |
8 | Au(0.5)-Ir-Fe/BN | 9.7 | 4.9 | 70.1 | 16.3 | 5.4 | 0.0 | 0.0 | 0.0 | 3.2 | 92 |
9 | Ag(0.5)-Ir-Fe/BN | 10.8 | 5.2 | 68.5 | 17.9 | 4.6 | 0.0 | 0.8 | 0.0 | 3.0 | 92 |
10 | Ru(0.5)/BN | 41.5 | 3.2 | 5.3 | 6.8 | 32.2 | 0.0 | 5.3 | 15.3 | 31.8 | 89 |
11 | Ru(0.5)-Fe/BN | <0.5 | — | — | — | — | — | — | — | — | 100 |
12 | Ru(0.5)-Ir/BN | 3.1 | 18.2 | 37.1 | 16.0 | 12.9 | 0.0 | 3.0 | 2.8 | 10.0 | 100 |
13 b | Physical mixture | 35.3 | 5.9 | 42.0 | 15.4 | 20.6 | 0.0 | 2.7 | 1.9 | 11.5 | 92 |
Entry | Catalyst | Conv./% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
2 | Ru(0.1)-Ir-Fe/BN | 15.7 | 5.0 | 66.7 | 16.5 | 7.5 | 0.0 | 0.3 | 0.0 | 3.9 | 94 |
3 | Ru(0.3)-Ir-Fe/BN | 18.9 | 5.4 | 66.0 | 13.2 | 10.7 | 0.0 | 0.5 | 0.0 | 4.3 | 92 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 b | Ru(0.5)-Ir-Fe/BN | 23.3 | 5.4 | 58.5 | 19.4 | 10.2 | 0.0 | 0.7 | 0.5 | 5.2 | 94 |
6 c | Ru(2)-Ir(20)-Fe(1.4)/BN | 30.1 | 7.3 | 68.5 | 10.4 | 9.7 | 0.0 | 0.6 | 0.3 | 3.2 | 91 |
7 | Ru(1)-Ir-Fe/BN | 28.3 | 5.3 | 55.7 | 15.6 | 14.3 | 0.0 | 1.2 | 0.6 | 7.3 | 93 |
8 | Ru(1.5)-Ir-Fe/BN | 48.2 | 5.3 | 50.4 | 15.5 | 17.1 | 0.0 | 2.0 | 1.1 | 8.6 | 93 |
9 | Ru(2)-Ir-Fe/BN | 68.4 | 4.4 | 40.5 | 17.0 | 18.8 | 0.0 | 4.2 | 2.9 | 12.2 | 87 |
10 d | Ru(3)-Ir-Fe/BN | 29.8 | 6.1 | 36.2 | 14.1 | 25.9 | 0.0 | 4.1 | 3.0 | 10.7 | 101 |
11 | Ru(3)-Ir-Fe/BN | 95.3 | 2.4 | 28.2 | 18.9 | 13.6 | 0.0 | 10.5 | 8.2 | 18.4 | 88 |
Table 2 1,2-BuD hydrogenolysis over Ru(y)-Ir-Fe/BN (Ru = y (0?3) wt%, Ir = 5 wt%, Fe = 0.4 wt%) catalysts.
Entry | Catalyst | Conv./% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
2 | Ru(0.1)-Ir-Fe/BN | 15.7 | 5.0 | 66.7 | 16.5 | 7.5 | 0.0 | 0.3 | 0.0 | 3.9 | 94 |
3 | Ru(0.3)-Ir-Fe/BN | 18.9 | 5.4 | 66.0 | 13.2 | 10.7 | 0.0 | 0.5 | 0.0 | 4.3 | 92 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 b | Ru(0.5)-Ir-Fe/BN | 23.3 | 5.4 | 58.5 | 19.4 | 10.2 | 0.0 | 0.7 | 0.5 | 5.2 | 94 |
6 c | Ru(2)-Ir(20)-Fe(1.4)/BN | 30.1 | 7.3 | 68.5 | 10.4 | 9.7 | 0.0 | 0.6 | 0.3 | 3.2 | 91 |
7 | Ru(1)-Ir-Fe/BN | 28.3 | 5.3 | 55.7 | 15.6 | 14.3 | 0.0 | 1.2 | 0.6 | 7.3 | 93 |
8 | Ru(1.5)-Ir-Fe/BN | 48.2 | 5.3 | 50.4 | 15.5 | 17.1 | 0.0 | 2.0 | 1.1 | 8.6 | 93 |
9 | Ru(2)-Ir-Fe/BN | 68.4 | 4.4 | 40.5 | 17.0 | 18.8 | 0.0 | 4.2 | 2.9 | 12.2 | 87 |
10 d | Ru(3)-Ir-Fe/BN | 29.8 | 6.1 | 36.2 | 14.1 | 25.9 | 0.0 | 4.1 | 3.0 | 10.7 | 101 |
11 | Ru(3)-Ir-Fe/BN | 95.3 | 2.4 | 28.2 | 18.9 | 13.6 | 0.0 | 10.5 | 8.2 | 18.4 | 88 |
Fig. 1. Reusability of Ru(0.5)-Ir-Fe/BN (Ru = 0.5 wt%, Ir = 5 wt%, Fe = 0.4 wt%) catalyst in 1,2-BuD hydrogenolysis. Details were described in Table S4. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K, t = 24 h. a Reuse method 1: after reaction, the catalyst was collected by centrifugation (6000 r min?1, 5 min), washed with water and dried at 383 K for 12 h. b Reuse method 2: after reaction, the catalyst was collected by centrifugation (6000 r min?1, 5 min), washed with water, dried at 383 K for 12 h, and then calcined at 573 K for 1 h.
Fig. 2. Time course of 1,2-BuD hydrogenolysis over Ru(0.5)-Ir-Fe/BN (Ru = 0.5 wt%, Ir = 5 wt%, Fe = 0.4 wt%) catalyst. Details were described in Table S5. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K.
Substrate | Catalyst | Conv./% | Product (Selectivity/%-C) | C.B./% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | Ir-Fe/BN | 12.6 | ![]() | ![]() | ![]() | others (12.6) | 101 | |||||
Ru(0.5)-Ir-Fe/BN | 24.1 | ![]() | ![]() | ![]() | others (18.7) | 97 | ||||||
![]() | Ir-Fe/BN | 21.1 | ![]() | ![]() | ![]() | others (9.6) | 100 | |||||
Ru(0.5)-Ir-Fe/BN | 29.0 | ![]() | ![]() | ![]() | others (29.4) | 90 | ||||||
![]() | Ir-Fe/BN | 14.6 | ![]() | ![]() | ![]() | others (10.3) | 95 | |||||
Ru(0.5)-Ir-Fe/BN | 25.7 | ![]() | ![]() | ![]() | others (16.1) | 90 | ||||||
![]() | Ir-Fe/BN | 43.4 | ![]() | ![]() | ![]() | others (6.9) | 90 | |||||
Ru(0.5)-Ir-Fe/BN | 54.0 | ![]() | ![]() | ![]() | others (12.3) | 90 |
Table 3 Hydrogenolysis of various alcohols over Ru(0.5)-Ir-Fe/BN and Ir-Fe/BN catalysts.
Substrate | Catalyst | Conv./% | Product (Selectivity/%-C) | C.B./% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | Ir-Fe/BN | 12.6 | ![]() | ![]() | ![]() | others (12.6) | 101 | |||||
Ru(0.5)-Ir-Fe/BN | 24.1 | ![]() | ![]() | ![]() | others (18.7) | 97 | ||||||
![]() | Ir-Fe/BN | 21.1 | ![]() | ![]() | ![]() | others (9.6) | 100 | |||||
Ru(0.5)-Ir-Fe/BN | 29.0 | ![]() | ![]() | ![]() | others (29.4) | 90 | ||||||
![]() | Ir-Fe/BN | 14.6 | ![]() | ![]() | ![]() | others (10.3) | 95 | |||||
Ru(0.5)-Ir-Fe/BN | 25.7 | ![]() | ![]() | ![]() | others (16.1) | 90 | ||||||
![]() | Ir-Fe/BN | 43.4 | ![]() | ![]() | ![]() | others (6.9) | 90 | |||||
Ru(0.5)-Ir-Fe/BN | 54.0 | ![]() | ![]() | ![]() | others (12.3) | 90 |
Fig. 3. XRD patterns (30o?50o) of monometallic catalysts and Ru(y)-Ir-Fe/BN (Ru = y (0?3) wt%, Ir = 5 wt%, Fe = 0 or 0.4 wt%) catalysts after reaction. (a) FeOx/BN (Fe = 0.4 wt%); (b) Ir/BN; (c) Ru(0.5)/BN; (d) Ir-Fe/BN; (e) Ru(0.5)-Ir/BN; (f) Ru(0.3)-Ir-Fe/BN; (g) Ru(0.5)-Ir-Fe/BN; (h) Ru(1.5)-Ir-Fe/BN; (i) Ru(3)-Ir-Fe/BN; (j) BN. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K, t = 24 h. a The crystallite size was calculated based on the Ru metal at about 44o (fitting result was shown in Fig. S3), and the size of Ir species was not calculated due to the low intensity. XRD patterns (30°?75°) of catalysts are provided in Fig. S2.
Entry | Catalyst | XRD d/nma | TEM d/nmb | DXRD /%a | DCO /%c | Valence of Rud (XANES) | Valence of Fed (XANES) | Valence of Ird (XANES) | Ru0:Ir0:Fe0 (XANES) | Ru:Ir:Fe (nominal) | Ru:Ir:Fee (XPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Ir/BN | 3.1 | n.d. | 24 | 9 | — | — | 0.9 | — | — | — |
2 | 0.4 wt% FeOx/BN | — | n.d. | — | 0 | — | 2.9 | — | — | — | — |
3 | Ru(0.5)/BN | — | n.d. | — | 2 | 0.3 | — | — | — | — | — |
4 | Ir-Fe/BN | 2.6 | 1.7 | 42 | 6 | — | 0.7 | 0.6 | 0:1:0.2 | 0:1:0.25 | 0:1:0.4 |
5 | Ru(0.5)-Ir/BN | 2.8 | 1.8 | — | 9 | 0 | — | 0.6 | 0.2:1:0 | 0.19:1:0 | 0.06:1:0 |
6 | Ru(0.5)-Ir-Fe/BN | 2.5 (2.0f) | 2.0 | 44 (55f) | 5 (8g) | 0 | 0.7 | 0.6 | 0.2:1:0.2 | 0.19:1:0.25 | 0.05:1:0.3 |
7 | Ru(1.5)-Ir-Fe/BN | n.d. | n.d. | n.d. | 5 | n.d. | n.d. | n.d. | n.d. | 0.57:1:0.25 | n.d. |
8 | Ru(3)-Ir-Fe/BN | 2.9 | 2.4 | 38 | 5 | 0 | 0.4 | 0.7 | 1.3:1:0.2 | 1.1:1:0.25 | n.d. |
Table 4 Summary of characterization results.
Entry | Catalyst | XRD d/nma | TEM d/nmb | DXRD /%a | DCO /%c | Valence of Rud (XANES) | Valence of Fed (XANES) | Valence of Ird (XANES) | Ru0:Ir0:Fe0 (XANES) | Ru:Ir:Fe (nominal) | Ru:Ir:Fee (XPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Ir/BN | 3.1 | n.d. | 24 | 9 | — | — | 0.9 | — | — | — |
2 | 0.4 wt% FeOx/BN | — | n.d. | — | 0 | — | 2.9 | — | — | — | — |
3 | Ru(0.5)/BN | — | n.d. | — | 2 | 0.3 | — | — | — | — | — |
4 | Ir-Fe/BN | 2.6 | 1.7 | 42 | 6 | — | 0.7 | 0.6 | 0:1:0.2 | 0:1:0.25 | 0:1:0.4 |
5 | Ru(0.5)-Ir/BN | 2.8 | 1.8 | — | 9 | 0 | — | 0.6 | 0.2:1:0 | 0.19:1:0 | 0.06:1:0 |
6 | Ru(0.5)-Ir-Fe/BN | 2.5 (2.0f) | 2.0 | 44 (55f) | 5 (8g) | 0 | 0.7 | 0.6 | 0.2:1:0.2 | 0.19:1:0.25 | 0.05:1:0.3 |
7 | Ru(1.5)-Ir-Fe/BN | n.d. | n.d. | n.d. | 5 | n.d. | n.d. | n.d. | n.d. | 0.57:1:0.25 | n.d. |
8 | Ru(3)-Ir-Fe/BN | 2.9 | 2.4 | 38 | 5 | 0 | 0.4 | 0.7 | 1.3:1:0.2 | 1.1:1:0.25 | n.d. |
Fig. 4. TEM-EDX analysis of used catalysts (Ru = 0.5 wt% or 3 wt%, Ir = 0 or 5 wt%, Fe = 0 or 0.4 wt%). (A, A’) Ru(0.5)/BN; (B, B’’) Ru(0.5)-Ir/BN; (C, C’’) Ru(0.5)-Ir-Fe/BN; (D, D’’) Ru(3)-Ir-Fe/BN. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K, t = 24 h.
Sample (loading in wt%) | Edge | Shells | CNa | R/10-1 nmb | σ/10-1 nmc |
---|---|---|---|---|---|
Ru(0.5)/BN | Ru K | Ru-Ru | 9.8 | 2.68 | 0.070 |
Ru-O | 2.6 | 2.04 | 0.060 | ||
Ru(0.5)- Ir(5)/BN | Ru K | Ru-Ir | 6.9 | 2.70 | 0.073 |
Ru-Ru | 0.8 | 2.68 | 0.067 | ||
Ru-B | 2.6 | 2.23 | 0.062 | ||
Ir L3 | Ir-Ir | 7.3 | 2.75 | 0.066 | |
Ir-Ru | 1.3d | 2.70d | 0.072 | ||
Ru(0.5)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ir | 6.8 | 2.68 | 0.073 |
Ru-Ru | 1.6 | 2.74 | 0.061 | ||
Ru-B | 1.9 | 2.17 | 0.060 | ||
Fe K | Fe-O | 0.7 | 1.95 | 0.090 | |
Fe-Ir | 6.0 | 2.62 | 0.089 | ||
Ir L3 | Ir-Fe | 1.5d | 2.62d | 0.083 | |
Ir-Ru | 1.3d | 2.68d | 0.076 | ||
Ir-Ir | 6.2 | 2.74 | 0.067 | ||
Ru(3)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ru | 6.2 | 2.66 | 0.074 |
Ru-Ir | 4.0 | 2.68 | 0.076 | ||
Ru-Fe | 0.4 | 2.60 | 0.068 | ||
Fe K | Fe-Fe | 0.8 | 2.55 | 0.060 | |
Fe-Ru | 1.9 | 2.60 | 0.080 | ||
Fe-Ir | 3.5 | 2.63 | 0.083 | ||
Ir L3 | Ir-Fe | 0.9d | 2.63d | 0.103 | |
Ir-Ru | 4.4 | 2.68 | 0.071 | ||
Ir-Ir | 4.1 | 2.74 | 0.065 |
Table 5 Summary of curve fitting results of EXAFS for used catalysts.
Sample (loading in wt%) | Edge | Shells | CNa | R/10-1 nmb | σ/10-1 nmc |
---|---|---|---|---|---|
Ru(0.5)/BN | Ru K | Ru-Ru | 9.8 | 2.68 | 0.070 |
Ru-O | 2.6 | 2.04 | 0.060 | ||
Ru(0.5)- Ir(5)/BN | Ru K | Ru-Ir | 6.9 | 2.70 | 0.073 |
Ru-Ru | 0.8 | 2.68 | 0.067 | ||
Ru-B | 2.6 | 2.23 | 0.062 | ||
Ir L3 | Ir-Ir | 7.3 | 2.75 | 0.066 | |
Ir-Ru | 1.3d | 2.70d | 0.072 | ||
Ru(0.5)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ir | 6.8 | 2.68 | 0.073 |
Ru-Ru | 1.6 | 2.74 | 0.061 | ||
Ru-B | 1.9 | 2.17 | 0.060 | ||
Fe K | Fe-O | 0.7 | 1.95 | 0.090 | |
Fe-Ir | 6.0 | 2.62 | 0.089 | ||
Ir L3 | Ir-Fe | 1.5d | 2.62d | 0.083 | |
Ir-Ru | 1.3d | 2.68d | 0.076 | ||
Ir-Ir | 6.2 | 2.74 | 0.067 | ||
Ru(3)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ru | 6.2 | 2.66 | 0.074 |
Ru-Ir | 4.0 | 2.68 | 0.076 | ||
Ru-Fe | 0.4 | 2.60 | 0.068 | ||
Fe K | Fe-Fe | 0.8 | 2.55 | 0.060 | |
Fe-Ru | 1.9 | 2.60 | 0.080 | ||
Fe-Ir | 3.5 | 2.63 | 0.083 | ||
Ir L3 | Ir-Fe | 0.9d | 2.63d | 0.103 | |
Ir-Ru | 4.4 | 2.68 | 0.071 | ||
Ir-Ir | 4.1 | 2.74 | 0.065 |
Fig. 5. H2-TPR profiles of monometallic catalysts and Ru(y)-Ir-Fe/BN (Ru = y (0?3) wt%, Ir = 5 wt%, Fe = 0 or 0.4 wt%) catalysts. (a) Ru(0.5)/BN; (b) Ir/BN; (c) Ru(0.5)-Ir/BN; (d) Ir-Fe/BN; (e) Ru(0.5)-Ir-Fe/BN; (f) Ru(1.5)-Ir-Fe/BN; (g) Ru(3)-Ir-Fe/BN.
Fig. 6. DRIFT spectra of CO adsorbed on catalysts (Ru = 0?3 wt%, Ir = 0 or 5 wt%, Fe = 0 or 0.4 wt%) after reduction at 473 K for 1 h. n.d.: no data. Y-axis is normalized by corresponding CO adsorption amount except Ru/BN catalysts. a Dispersion (%) determined by the molar ratio of chemisorbed CO to total noble metal; measured after reduction under a H2 flow at 473 K for 1 h in a gas phase (see Table 4).
Fig. 7. Proposed structure of Ru(0.5)-Ir-Fe/BN catalyst during reaction and possible mechanisms. Note: the partial covering of the alloy particles with BN may occur, especially in the dry catalyst.
|
[1] | 刘露杰, 刘奔, 中川善直, 刘斯宝, 王亮, 藪下瑞帆, 冨重圭一. 生物质和塑料加氢脱氧制备燃料和化学品的双金属催化剂研究进展[J]. 催化学报, 2024, 62(7): 1-31. |
[2] | 修子媛, 穆韡, 周欣, 韩晓军. 超薄氮化硼-铁-石墨烯三明治结构中的温和极化电场用于高效氮还原[J]. 催化学报, 2024, 65(10): 126-137. |
[3] | 曾严, 王慧, 杨惠茹, 隽超, 李丹, 温晓东, 张帆, 邹吉军, 彭冲, 胡常伟. 镍纳米粒子耦合氧空位高效催化转化棕榈酸制备烷烃[J]. 催化学报, 2023, 47(4): 229-242. |
[4] | 田昊, 徐冰君. 六方氮化硼催化的乙烷丙烷共脱氢: 一种C-H键活化和机理研究的有效手段[J]. 催化学报, 2022, 43(8): 2173-2182. |
[5] | 程世群, 翁雪霏, 王庆楠, 周百川, 李文翠, 李名润, 贺雷, 王东琪, 陆安慧. 富缺陷BN负载的高分散Cu催化乙醇脱氢制乙醛[J]. 催化学报, 2022, 43(4): 1092-1100. |
[6] | 吴凡, 贺雷, 李文翠, 路饶, 王阳, 陆安慧. 氮化硼负载的高分散Au-CuOx纳米颗粒用于低温CO氧化[J]. 催化学报, 2021, 42(3): 388-395. |
[7] | 汪东东, 龚万兵, 张继方, 韩苗苗, 陈春, 张云霞, 汪国忠, 张海民, 赵惠军. 限域NiCo合金纳米颗粒高效催化生物质衍生物水相加氢脱氧[J]. 催化学报, 2021, 42(11): 2027-2037. |
[8] | 林凯, 赵晨. 亲水性介孔碳负载Ru纳米粒子催化海藻油低温水相加氢脱氧制烷烃[J]. 催化学报, 2020, 41(8): 1174-1185. |
[9] | 孙晓颖, 刘美君, 黄瑶瑶, 李波, 赵震. 单原子铂和氮化硼载体之间电子作用及其对丙烷脱氢反应催化性能的影响[J]. 催化学报, 2019, 40(6): 819-825. |
[10] | Nhung N. Duong, Darius Aruho, Bin Wang, Daniel E. Resasco. 不同Rh表面上苯甲醚加氢脱氧[J]. 催化学报, 2019, 40(11): 1721-1730. |
[11] | 石磊, 王东琪, 陆安慧. 氮化硼催化低碳烷烃氧化脱氢的活性起源探讨[J]. 催化学报, 2018, 39(5): 908-913. |
[12] | 石磊, 闫冰, 邵丹, 姜凡, 王东琪, 陆安慧. 羟基化氮化硼催化乙烷氧化脱氢制乙烯[J]. 催化学报, 2017, 38(2): 389-395. |
[13] | 王晓菲, 陈吉祥. In对Ni/SiO2催化剂苯甲醚加氢脱氧性能的影响:苯环加氢及C-C键氢解的抑制作用[J]. 催化学报, 2017, 38(11): 1818-1830. |
[14] | 刘琪英, 左华亮, 张琦, 王铁军, 马隆龙. Ni/SAPO-11催化剂上棕榈油加氢脱氧制异构烃燃料[J]. 催化学报, 2014, 35(5): 748-756. |
[15] | 张兴华, 张琦, 陈伦刚, 徐莹, 王铁军, 马隆龙. Ni/SiO2-ZrO2催化剂焙烧温度对其催化愈创木酚加氢脱氧性能的影响[J]. 催化学报, 2014, 35(3): 302-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||