催化学报 ›› 2025, Vol. 71: 128-137.DOI: 10.1016/S1872-2067(24)60243-3

• 论文 • 上一篇    下一篇

优化局部水解离动力学促进碱性电化学二氧化碳C-C偶联

华庆峰a,1, 梅昊a,1, 冯广a,1, 苏丽娜a, 杨雅男a, 李其昌a, 李少波a, 常晓侠b,*(), 黄志琦a,*()   

  1. a北京理工大学化学化工学院, 化学能源与绿色催化北京市重点实验室, 北京 102401
    b北京大学化学与分子工程学院, 北京 100871
  • 收稿日期:2024-12-31 接受日期:2025-01-15 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: changxx@pku.edu.cn (常晓侠), huangzhiqi@bit.edu.cn (黄志琦).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家自然科学基金(22208019);国家自然科学基金(22278002)

Accelerating C-C coupling in alkaline electrochemical CO2 reduction by optimized local water dissociation kinetics

Qingfeng Huaa,1, Hao Meia,1, Guang Fenga,1, Lina Sua, Yanan Yanga, Qichang Lia, Shaobo Lia, Xiaoxia Changb,*(), Zhiqi Huanga,*()   

  1. aBeijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
    bCollege of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2024-12-31 Accepted:2025-01-15 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail:changxx@pku.edu.cn(X. Chang),huangzhiqi@bit.edu.cn(Z. Huang).
  • About author:

    1Contributed to this work equally.

  • Supported by:
    National Natural Science Foundation of China(22208019);National Natural Science Foundation of China(22278002)

摘要:

由可再生能源驱动的电化学二氧化碳还原反应(CO2RR), 能够将温室气体CO2转化为增值化学品和燃料, 为资源循环利用提供了极具潜力的途径. 然而, CO2RR的反应机制极为复杂, 尤其是多步质子耦合电子转移步骤, 严重阻碍了反应高效率与高选择性的实现. 当前, CO2RR的调控策略多聚焦于碳中间体吸附强度的调节. 但在整个反应历程中, CO2活化、*CO质子化以及引导C-C偶联等关键步骤中, 质子都发挥着不可或缺的作用. 因此, CO2RR同样受到H2O的缓慢解离动力学的制约. 基于此, 借助更为合理且精准的手段调节质子供给, 有望降低反应能垒、促进特定产物的高效生成. 虽然目前已有关于不对称偶联的研究报道, 但要实现多碳(C2+)产物的高选择性, 仍需对反应路径的多个关键步骤进行更系统的优化.
本文通过精确调控局部水解离动力学, 成功实现CO2RR中CO2分子活化和*CO质子化两个核心步骤的优化调控, 并有效引导不对称*CO-*COH偶联, 显著提升了C2+物种的选择性. 该策略在实验中得到充分验证, 高附加值产物的法拉第效率与水解离中心密度呈典型的火山型曲线变化. 在碱性电解液中, 当电流密度达到300 mA cm-2时, 负载于氮掺杂碳纳米纤维上、且含有适量Fe单原子位点的Cu纳米颗粒展现出了卓越的性能. 其C2+产物的法拉第效率最高可达73.2%, 并且在超过19 h的测试中保持了良好的稳定性, 未出现明显的性能衰减. 研究还发现, 质子供体的含量对反应结果有着至关重要的影响. 当质子供体不足时, C1产物的生成量显著增加; 而当质子供体过量时, 析氢反应则会加剧, 进而影响整个反应的效率和选择性. 实验与理论相互印证, 充分证实了Fe位点在加速水解离动力学及促进CO2活化、*CO中间体质子化过程中的关键作用. 通过原位衰减全反射表面增强红外吸收光谱分析技术, 能够直观地观察*COOH中间体在更低的电位下出现, 这进一步表明优化后的局部水离解动力学在引导CO2分子加氢反应路径方面具有明显优势. 理论计算得到相同结论, 适中水解离中心的构建, 有效降低了CO2活化及*CO质子化的反应能垒, 进而大幅提高了关键中间体在Cu位点的覆盖度. 基于此, 大量生成的*CO和*COH中间体为不对称的*CO-*COH偶联反应创造了有利条件, 极大地提升了反应对C2+产物的选择性, 有力地推动了CO2RR朝着目标产物的高效转化.
综上, 本文通过优化局部水解离动力学, 精准调控CO2RR关键步骤的质子化过程, 有效降低反应能垒, 极大促进C2+产物高效生成. 该成果着重于反应路径的整体优化, 阐明了水解离中心对多个关键步骤的促进作用, 为后续高效催化剂的设计提供了新思路.

关键词: CO2还原, 质子, 微环境, 优化局部H2O解离动力学, CO2活化, 不对称耦合

Abstract:

Electrochemical carbon dioxide reduction reaction (CO2RR) produces valuable chemicals by consuming gaseous CO2 as well as protons from the electrolyte. Protons, produced by water dissociation in alkaline electrolyte, are critical for the reaction kinetics which involves multiple proton coupled electron transfer steps. Herein, we demonstrate that the two key steps (CO2-*COOH and *CO-*COH) efficiency can be precisely tuned by introducing proper amount of water dissociation center, i.e., Fe single atoms, locally surrounding the Cu catalysts. In alkaline electrolyte, the Faradaic efficiency (FE) of multi-carbon (C2+) products exhibited a volcano type plot depending on the density of water dissociation center. A maximum FE for C2+ products of 73.2% could be reached on Cu nanoparticles supported on N-doped Carbon nanofibers with moderate Fe single atom sites, at a current density of 300 mA cm-2. Experimental and theoretical calculation results reveal that the Fe sites facilitate water dissociation kinetics, and the locally generated protons contribute significantly to the CO2 activation and *CO protonation process. On the one hand, in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (in-situ ATR-SEIRAS) clearly shows that the *COOH intermediate can be observed at a lower potential. This phenomenon fully demonstrates that the optimized local water dissociation kinetics has a unique advantage in guiding the hydrogenation reaction pathway of CO2 molecules and can effectively reduce the reaction energy barrier. On the other hand, abundant *CO and *COH intermediates create favorable conditions for the asymmetric *CO-*COH coupling, significantly increasing the selectivity of the reaction for C2+ products and providing strong support for the efficient conversion of related reactions to the target products. This work provides a promising strategy for the design of a dual sites catalyst to achieve high FE of C2+ products through the optimized local water dissociation kinetics.

Key words: CO2 reduction, Proton, Microenvironment, Optimized local water dissociation kinetics, CO2 activation, Asymmetric coupling