催化学报 ›› 2025, Vol. 71: 330-339.DOI: 10.1016/S1872-2067(24)60251-2

• 论文 • 上一篇    下一篇

Fe2O3/TiO2催化剂高效催化NO加氢制NH3

李彦琴a,b, 汪文龙a,*(), 田俊奇c, 崔丹b, 袁军c, 方彬a,e, 尹年良a, 李泽龙c,*(), 于锋b,d,*()   

  1. a东莞理工学院材料科学与工程学院, 广东东莞 523808
    b石河子大学化学化工学院新疆兵团化工绿色加工重点实验室, 新疆石河子 832003
    c兰州大学化学化工学院甘肃省高级催化重点实验室, 甘肃兰州 730000
    d石河子大学兵团工业技术研究院碳中和与环境催化技术实验室, 新疆石河子 832003
    e中国科学技术大学化学与材料科学学院, 安徽合肥 230026
  • 收稿日期:2024-11-27 接受日期:2025-01-03 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: wangwl@dgut.edu.cn (汪文龙), lizl@lzu.edu.cn (李泽龙), yufeng05@mail.ipc.ac.cn (于锋).
  • 基金资助:
    新疆科技计划(2023TSYCCX0118);国家自然科学基金(21972018)

Highly efficient hydrogenation of NO to NH3 via a Fe2O3/TiO2 catalyst

Yanqin Lia,b, Wenlong Wanga,*(), Junqi Tianc, Dan Cuib, Jun Yuanc, Bin Fanga,e, Nianliang Yina, Zelong Lic,*(), Feng Yub,d,*()   

  1. aSchool of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
    bKey Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
    cKey Laboratory of Advanced Catalysis, Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
    dCarbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, Xinjiang, China
    eSchool of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2024-11-27 Accepted:2025-01-03 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: wangwl@dgut.edu.cn (W. Wang), lizl@lzu.edu.cn (Z. Li), yufeng05@mail.ipc.ac.cn (F. Yu).
  • Supported by:
    Xinjiang Science and Technology Program(2023TSYCCX0118);National Natural Science Foundation of China(21972018)

摘要:

氮氧化物(NOx)作为大气的主要污染物, 不仅危害生物体的健康, 还会破坏生态环境系统. 为了缓解环境污染, 目前已开发了多种NO消除技术, 其中选择性催化还原NO(NH3-SCR)因其脱硝效率高、过程相对简单、清洁而成为最成熟、最可靠的脱硝技术之一. 然而, NO本身作为一种含氮分子, 是一种更具活性和经济可行性的氮资源, 相较于直接通过NH3-SCR技术将其转化为N2排放,若能利用绿色氢能(H2)将其催化转化为NH3,既可实现污染物治理,又能完成高附加值含氮化学品的可持续合成. 因此, 设计一种既能高效去除NO又能实现其加氢合成NH3催化剂对缓解环境污染和能源危机至关重要.
本文结合水热和浸渍法制备了一种新型Fe2O3/TiO2-MOF催化剂, 并用于催化NO加氢制NH3. 该催化剂在450 °C, 0.1 MPa和38000 mL g-1 h-1的气体空速条件下, 具有99%的NO转化率和95%的NH3选择性. 此外, 该催化剂还表现出优异的稳定性和耐水、耐硫性能. 通过H2程序升温还原、NO程序升温脱附和原位红外光谱结果表明, Fe2O3/TiO2-MOF的优异活性归因于Fe2O3和TiO2之间的强相互作用, 这有助于在反应条件下产生用于NO吸附和活化的Fe2+活性位点. 密度泛函理论计算表明, 在Fe2O3/TiO2-MOF表面上的NO活化后, 在氮末端发生氢化, 从而进一步加氢生成NH3. 此外, 探索了NO加氢生成NH3的反应途径, 证实了该过程的热力学可行性.
综上, 本文采用金属有机框架(MIL-125)衍生的MOF作为载体, 合成了Fe2O3/TiO2-MOF催化剂并高效催化NO选择性转化NH3, 此反应的关键是Fe2O3和TiO2-MOF之间的相互作用, 在反应条件下产生用于NO吸附和活化的Fe2+. 本文为合理设计NO加氢合成NH3催化剂提供了新思路.

关键词: 氮氧化物, 合成氨, NO加氢, 选择性催化还原, 脱硝

Abstract:

Nitrogen oxides (NOx) present in flue gas are economically renewable N1 resources. Unlike traditional selective catalytic reduction processes that convert NO into N2, redirecting NO towards the synthesis of value-added NH3 offers significant practical benefits. In this study, a Ti-based metal-organic framework (Ti-MOF), specifically MIL-125, was utilized as a support for Fe, which was subsequently calcined at 400 °C to produce a Fe2O3/TiO2-MOF catalyst. The resulting catalyst demonstrated exceptional performance, achieving 99% NO conversion and 95% NH3 selectivity under optimal conditions of 450 °C, 0.1 MPa, and a gas hourly space velocity of 38000 mL g-1 h−1. Additionally, the catalyst exhibited excellent stability and resistance to water and sulfur. The high efficiency of Fe2O3/TiO2-MOF is attributed to the abundance of Fe2+ sites at the reaction temperature, which enhances NO adsorption and activation. Furthermore, density functional theory calculations suggest that NO undergoes hydrogenation at the N-terminus on the Fe2O3/TiO2-MOF surface, leading directly to NH3 synthesis rather than dissociation followed by hydrogenation. This catalyst presents a novel approach for converting NOx into high-value chemical products.

Key words: Nitrogen oxides, Synthetic ammonia, NO hydrogenation, Selective catalytic reduction, Denitration