催化学报 ›› 2025, Vol. 72: 164-175.DOI: 10.1016/S1872-2067(24)60276-7

• 论文 • 上一篇    下一篇

活性非键合氧介导NiFe2O4晶格氧氧化以实现高效稳定水氧化

唐江渔a, 王啸b, 王云发a, 石敏a, 霍彭a, 吴建祥a, 李巧霞a,*(), 徐群杰a,c,*()   

  1. a上海电力大学, 上海市电力材料防护与新材料重点实验室, 上海热交换系统节能工程技术研究中心, 上海 200090
    b上海大学环境与化学工程学院, 上海 200444
    c上海污染控制与生态安全研究院, 上海 200092
  • 收稿日期:2024-12-06 接受日期:2025-02-03 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: liqiaoxia@shiep.edu.cn (李巧霞),xuqunjie@shiep.edu.cn (徐群杰).
  • 基金资助:
    国家自然科学基金(22172098);上海市科学技术委员会(23ZR1424900);上海市科学技术委员会(22010501200);上海市科学技术委员会(21ZR1425000);上海市科学技术委员会(19DZ2271100)

Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe2O4 achieving efficient and stable water oxidation

Jiangyu Tanga, Xiao Wangb, Yunfa Wanga, Min Shia, Peng Huoa, Jianxiang Wua, Qiaoxia Lia,*(), Qunjie Xua,c,*()   

  1. aShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
    bSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    cShanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
  • Received:2024-12-06 Accepted:2025-02-03 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: liqiaoxia@shiep.edu.cn (Q. Li), xuqunjie@shiep.edu.cn (Q. Xu).
  • Supported by:
    National Natural Science Foundation of China(22172098);Science and Technology Commission of Shanghai Municipality(23ZR1424900);Science and Technology Commission of Shanghai Municipality(22010501200);Science and Technology Commission of Shanghai Municipality(21ZR1425000);Science and Technology Commission of Shanghai Municipality(19DZ2271100)

摘要:

电解水制氢工艺是实现可再生能源转化和储备的重要环节. 析氧反应(OER)作为电解水制氢过程中重要的半反应, 受制于其缓慢的反应动力学而限制了电解水制氢的实际应用. 传统的晶格氧氧化路径(LOM)虽然绕过了吸附演化机制(AEM)中M-OOH*的形成从而有效提高了OER反应动力学, 但是该机制中(M-O)成键带的参与会导致M-O键键序降低从而引起催化剂的结构失稳. 引入一个非键合氧(ONB)带有望减少(M-O)带在OER过程中的参与以实现直接的O-O耦合并维持其初始键序. 这要求ONB带处于费米能级附近并位于下哈伯德带(LHB)之上. 因此基于能带理论调控OER反应路径来兼顾催化剂的活性和稳定性是本文的研究重点.

先前研究已经证实了向金属氧化物或氢氧化物中引入ONB的可行性, 但少有研究同时关注的可及性和活性. 考虑到NiFe2O4晶体结构中八面体和四面体结构的不对称性利于ONB的形成, 本文通过改变退火环境向NiFe2O4中引入额外的ONB来避免Zn, Li, Ce, 等传统惰性原子掺杂来引入ONB的方法中可能带来的金属溶出问题. 并结合原位生长硫酸根的方法有效地提升了ONB的活性, 制备了一系列具有不同能带结构的NiFe2O4催化剂. 实现了从AEM到基于ONB的晶格氧氧化路径(LOMNB)的转化. 其中具有活性ONB的NiFe2O4 (Ar-NFO-S)催化剂的OER性能得到显著提升; 在10 mA cm-2的电流密度下具有206 mV的低过电位以及优异的稳定性和耐久性. 通过物理表征和态密度计算揭示了活性ONB的结构起源; 结果表明, 前驱体在氩气气氛中退火有效地削弱了金属与氧之间的电荷转移, 增强了NiFe2O4中Ni的八面体填充, 这有利于O2结构基序的形成(与两个八面体镍配位和一个四面体铁配位)从而成功地向NiFe2O4中引入了额外的ONB, 此外原位生长的硫酸根作为电子受体有效提升了Ni-O共价强度并抑制了金属d电子活性, 进而提升了ONB的反应性. 结合电化学原位表征和第一性原理计算等方法系统地研究了不同能带结构的催化剂的OER反应动力学和机理. 结果表明: OER过程中表面ONB的2p空穴累积和可逆氧化还原是触发和维持NiFe2O4中LOMNB的关键.

综上所述, 本文系统研究了ONB的可及性与反应性对于OER反应动力学的影响. 通过引入活性ONB以减少M-O成键在OER过程中的参与以规避传统LOM中催化剂结构不稳定的缺点, 从反应路径上兼顾了催化剂的活性和稳定性. 这些结论可能为未来尖晶石氧化物基LOM催化剂的设计与研究提供有价值的见解.

关键词: 非键合氧, 晶格氧氧化机理, 氧析出反应, NiFe2O4, 尖晶石氧化物

Abstract:

The oxygen evolution reaction (OER) serves as a fundamental half-reaction in the electrolysis of water for hydrogen production, which is restricted by the sluggish OER reaction kinetics and unable to be practically applied. The traditional lattice oxygen oxidation mechanism (LOM) offers an advantageous route by circumventing the formation of M-OOH* in the adsorption evolution mechanism (AEM), thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M-O bond order. Fortunately, the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen, which could be activated by rational band structure design for direct O-O coupling, where the M-O bond maintains its initial bond order. Here, non-bonding oxygen was introduced into NiFe2O4 via annealing in an oxygen-deficient atmosphere. Then, in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons, thereby facilitating the transformation of the redox center from metal to oxygen. LOM based on non-bonding oxygen (LOMNB) was successfully activated within NiFe2O4, exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm-2 and excellent durability of stable operation for over 150 h. Additionally, catalysts featuring varying band structures were synthesized for comparative analysis, and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides. These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts.

Key words: Non-bonding oxygen, Lattice oxygen oxidation mechanism, Oxygen evolution reaction, NiFe2O4, Spinel oxide