催化学报 ›› 2025, Vol. 72: 176-186.DOI: 10.1016/S1872-2067(25)64665-1

• 论文 • 上一篇    下一篇

在BiVO4光阳极上构建局域电场以促进水氧化过程中的质子转移

关志星a,1, 张颖a,1, 冯芳芳a, 李朝辉a, 刘艳莉a, 吴梓峰a, 郑兴兴a, 扶雄辉a, 张渊明a, 廖文彬a, 陈嘉璐a, 刘宏光a,b,*(), 朱毅a,c,*(), 魏永革d,*()   

  1. a暨南大学化学与材料学院, 广东广州 511443
    b五邑大学应用物理与材料学院, 广东江门 529020
    c暨南大学广东省功能配位超分子材料及应用重点实验室, 广东广州 510632
    d清华大学化学系, 有机光电子与分子工程教育部重点实验室, 北京 100084
  • 收稿日期:2024-12-17 接受日期:2025-02-24 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: hongguang_liu@jnu.edu.cn (刘宏光),tzhury@jnu.edu.cn (朱毅),yonggewei@mail.tsinghua.edu.cn (魏永革).
  • 作者简介:1共同第一作者.
  • 基金资助:
    广东省自然科学基金(2021A1515010390);中央高校基本科研业务费(21621401);广东省功能配位超分子材料及应用重点实验室开放基金(2020B121201005);有色金属及材料加工新技术教育部重点实验室/广西光电材料与器件重点实验室开放基金(20KF-5)

Boost proton transfer in water oxidation by constructing local electric fields on BiVO4 photoanodes

Zhixing Guana,1, Ying Zhanga,1, Fangfang Fenga, Zhaohui Lia, Yanli Liua, Zifeng Wua, Xingxing Zhenga, Xionghui Fua, Yuanming Zhanga, Wenbin Liaoa, Jialu Chena, Hongguang Liua,b,*(), Yi Zhua,c,*(), Yongge Weid,*()   

  1. aCollege of Chemistry and Materials Science, Jinan University, Guangzhou 511443, Guangdong, China
    bSchool of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China
    cGuangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, Guangdong, China
    dKey Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2024-12-17 Accepted:2025-02-24 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: hongguang_liu@jnu.edu.cn (H. Liu), tzhury@jnu.edu.cn (Y. Zhu), yonggewei@mail.tsinghua.edu.cn (Y. Wei).
  • About author:1 Contributed equally to this work.
  • Supported by:
    Natural Science Foundation of Guangdong Province(2021A1515010390);Fundamental Research Funds for the Central Universities(21621401);Open Fund of Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications(2020B121201005);Open Fund of Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices(20KF-5)

摘要:

太阳能驱动的光电化学(PEC)分解水技术, 是一种将太阳能直接转化为化学能的有效途径, 在解决能源危机方面具有极大的潜力. 在PEC系统中, 光阳极/电解质界面处发生析氧反应(OER), 其性能直接影响整个系统的光电转换效率. 钒酸铋(BiVO4)作为一种理想的PEC分解水光阳极材料, 因其具有可见光吸收的窄带隙(2.4 eV)、低成本和无毒性而备受关注. 在标准AM 1.5G模拟光照射下, BiVO4的理论光电流密度最大可达7.5 mA cm-2, 太阳能到氢气的转换效率接近9.2%. 然而, 由于OER是一个极其复杂的涉及四个电子和四个质子的质子耦合电子转移过程, 质子转移速率是影响PEC性能的关键因素. BiVO4水氧化反应中质子转移速率慢, 导致BiVO4的PEC性能受到了极大的限制.

本文针对BiVO4水氧化反应中质子转移速率慢的问题, 提出了一种通过在BiVO4光阳极表面引入羧基配体构建局域电场来加速质子转移的新方法. 以乙酸、乙二酸和丙三酸作为配体, 通过溶剂热法将其修饰在BiVO4表面, 制备出C2H4O2-BiVO4, C2H2O4-BiVO4和C6H8O6-BiVO4. 通过X射线多晶衍射、X射线光电子能谱(XPS)、扫描电镜、透射电镜和傅里叶变换红外光谱等表征, 证明CxHxOx-BiVO4光阳极成功制备. 将制备的CxHxOx-BiVO4光阳极应用于PEC分解水实验中; 结果表明, 与BiVO4相比, CxHxOx-BiVO4光阳极在AM 1.5G光照下显示出更快的质子转移速率和更优异的PEC水氧化性能. 其中, C6H8O6-BiVO4的光电流密度最大, 是BiVO4的3.5倍, 在1.23 VRHE下达到3.50 mA cm-2, 起始电位也从0.70 VRHE负移至0.38 VRHE. 法拉第效率达97%, 证实了光电流的增强是来源于水氧化反应. XPS揭示了从BiVO4到有机羧酸配体的显著电荷转移现象, 证明了局域电场的生成. 通过动力学同位素效应(KIE)和密度泛函理论计算, 证明了局域电场的存在能够加快质子转移, 且局域电场越强, KIE值越低, 质子转移越快, 热力学过电势越低. 与BiVO4光阳极相比, CxHxOx-BiVO4的KIE值显著降低, 且质子转移速率的顺序为C6H8O6-BiVO4 > C2H2O4-BiVO4 > C2H4O2-BiVO4, 这与其PEC水氧化性能的顺序是一致的. 这是因为C6H8O6吸电子能力最强, 产生的局域电场最强, KIE值最低, 质子转移最快, 过电势最低, 光电流最强. 另外, 对OER机理的分析研究表明, 随着质子转移速率增加, 质子耦合电子转移机制(PCET)转变为热力学上更有利的电子转移机制(ET). BiVO4的KIE值高达1.8 (> 1.5), 质子转移速率慢, 质子转移对整个OER过程影响大, 此时OER机制以PCET为主, OER速率慢. 随着C2H4O2, C2H2O4和C6H8O6的引入, KIE值逐步降低, C6H8O6-BiVO4的KIE值仅为1.0 (< 1.5), 质子转移不再是OER速率的决速步骤, 此时OER机制以ET为主, OER速率加快. 因此, 通过在BiVO4表面修饰有机羧酸配体构建局域电场, 可以加速质子的转移, 有效促进OER从PCET机制向ET机制转变, 提升BiVO4光阳极的水氧化性能.

综上所述, 本研究提出了一种通过在光阳极表面修饰有机羧酸配体构建局域电场来加速质子转移进而增强OER效率的策略, 为提高光电催化分解水的性能提供了新的思路.

关键词: 质子转移, BiVO4, 析氧反应, 局域电场, 光阳极

Abstract:

The slow-proton-fast-electron process severely limits the catalytic efficiency of oxygen evolution reaction. A method is proposed to accelerate proton transfer by building up local electric fields. Modifying acetic, ethanedioic and propanetricarboxylic (C6H8O6) ligands on BiVO4 surface results in a potential difference between BiVO4 and ligands that generates a local electric field which serves as a driving force for proton transfer. Among the ligands, carrying the strongest electron-withdrawing ability, the modification of C6H8O6 forms the strongest local electric field and leads to the fastest proton transfer and the smallest thermodynamic overpotential. C6H8O6-BiVO4 exhibits 3.5 times photocurrent density as high as that of pure BiVO4, which is 3.50 mA cm-2 at 1.23 VRHE. The onset potential of C6H8O6-BiVO4 shifts negatively from 0.70 to 0.38 VRHE. The mechanism for OER transitions from thermodynamically high energy proton-coupled electron transfer to thermodynamically low energy electron transfer as proton transfer is accelerated.

Key words: Proton transfer, BiVO4, Oxygen evolution reaction, Local electric field, Photoanodes