Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (10): 1820-1825.DOI: 10.1016/S1872-2067(12)60664-0
• Articles • Previous Articles Next Articles
Runhai Ouyang, Wei-Xue Li
Received:
2013-05-29
Revised:
2013-06-17
Online:
2013-09-29
Published:
2013-09-29
Contact:
Wei-Xue Li
Supported by:
This work was supported by the National Natural Science Foundation of China (21173210, 21225315) and the National Basic Research Program of China (973 Program, 2013CB834603).
Runhai Ouyang, Wei-Xue Li. Adsorbed CO induced change of the adsorption site and charge of Au adatoms on FeO(111)/Ru(0001)[J]. Chinese Journal of Catalysis, 2013, 34(10): 1820-1825.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60664-0
[1] Tasker P W. J Phys C, 1979, 12: 4977 [2] Noguera C. J Phys, 2000, 12: R367 [3] Goniakowski J, Finocchi F, Noguera C. Rep Prog Phys, 2008, 71: 016501 [4] Goniakowski J, Noguera C, Giordano L. Phys Rev Lett, 2007, 98: 205701 [5] Nilius N. Surf Sci Rep, 2009, 64: 595 [6] Netzer F P, Allegretti F, Surnev S. J Vac Sci Technol B, 2010, 28: 1 [7] Freund H-J. Chem Eur J, 2010, 16: 9384 [8] Freund H-J. Surf Sci, 2007, 601: 1438 [9] Galloway H C, Benítez J J, Salmeron M. Surf Sci, 1993, 298: 127 [10] Ritter M, Ranke W, Weiss W. Phys Rev B, 1998, 57: 7240 [11] Ranke W, Ritter M, Weiss W. Phys Rev B, 1999, 60: 1527 [12] Weiss W, Ritter M. Phys Rev B, 1999, 59: 5201 [13] Khan N A, Matranga C. Surf Sci, 2008, 602: 932 [14] Ketteler G, Ranke W. J Phys Chem B, 2003, 107: 4320 [15] Xue M S, Guo Q L. J Chem Phys, 2007, 127: 054705 [16] Kiguchi M, Entani S, Saiki K, Goto T, Koma A. Phys Rev B, 2003, 68: 115402 [17] Entani S, Kiguchi M, Saiki K. Surf Sci, 2004, 566-568, Part 1: 165 [18] Tusche C, Meyerheim H L, Kirschner J. Phys Rev Lett, 2007, 99: 026102 [19] Claeyssens F, Freeman C L, Allan N L, Sun Y, Ashfold M N R, Harding J H. J Mater Chem, 2005, 15: 139 [20] Merte L R, Grabow L C, Peng G, Knudsen J, Zeuthen H, Kudernatsch W, Porsgaard S, Laegsgaard E, Mavrikakis M, Besenbacher F. J Phys Chem C, 2011, 115: 2089 [21] Rienks E D L, Nilius N, Rust H P, Freund H J. Phys Rev B, 2005, 71: 241404 [22] Lemire C, Meyer R, Shaikhutdinov S K, Freund H J. Surf Sci, 2004, 552: 27 [23] Starr D E, Shaikhutdinov S K, Freund H J. Top Catal, 2005, 36: 33 [24] Nilius N, Rienks E D L, Rust H-P, Freund H-J. Phys Rev Lett, 2005, 95: 066101 [25] Berdunov N, Mariotto G, Balakrishnan K, Murphy S, Shvets I V. Surf Sci, 2006, 600: L287 [26] Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks E D L, Freund H-J. Phys Rev Lett, 2008, 101: 026102 [27] Lin X, Nilius N. J Phys Chem C, 2008, 112: 15325 [28] Fu Q, Li W-X, Yao Y X, Liu H Y, Su H-Y, Ma D, Gu X-K, Chen L M, Wang Z, Zhang H, Wang B, Bao X H. Science, 2010, 328: 1141 [29] Qin Z H, Liu C D, Chen J, Guo Q M, Yu Y H, Cao G Y. J Chem Phys, 2012, 136: 024701 [30] Ouyang R, Li W-X. Phys Rev B, 2011, 84: 165403 [31] Goniakowski J, Noguera C, Giordano L, Pacchioni G. Phys Rev B, 2009, 80: 125403 [32] Giordano L, Lewandowski M, Groot I M N, Sun Y N, Goniakowski J, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H J. J Phys Chem C, 2010, 114: 21504 [33] Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks E D L, Freund H-J. Phys Rev B, 2007, 76: 075416 [34] Zhang W H, Li Z Y, Luo Y, Yang J L. J Phys Chem C, 2009, 113: 8302 [35] Valden M, Lai X, Goodman D W. Science, 1998, 281: 1647 [36] Yoon B, Hakkinen H, Landman U, Worz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Science, 2005, 307: 403 [37] Chen M S, Goodman D W. Chem Soc Rev, 2008, 37: 1860 [38] Chen M S, Goodman D W. Science, 2004, 306: 252 [39] Hvolbaek B, Janssens T V W, Clausen B S, Falsig H, Christensen C H, Norskov J K. Nano Today, 2007, 2: 14 [40] Liu Z-P, Gong X-Q, Kohanoff J, Sanchez C, Hu P. Phys Rev Lett, 2003, 91: 266102 [41] Lai X F, Goodman D W. J Mol Catal A, 2000, 162: 33 [42] Newton M A. Chem Soc Rev, 2008, 37: 2644 [43] Berko A, Solymosi F. J Catal, 1999, 183: 91 [44] McClure S M, Lundwall M J, Goodman D W. Proc Natl Acad Sci USA, 2011, 108: 931 [45] Evans J W, Thiel P A. Science, 2010, 330: 599 [46] Nolte P, Stierle A, Jin-Phillipp N Y, Kasper N, Schulli T U, Dosch H. Science, 2008, 321: 1654 [47] Simonsen S B, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg S. J Am Chem Soc, 2010, 132: 7968 [48] Yang F, Chen M S, Goodman D W. J Phys Chem C, 2009, 113: 254 [49] Tao F, Dag S, Wang L-W, Liu Z, Butcher D R, Bluhm H, Salmeron M, Somorjai G A. Science, 2010, 327: 850 [50] Thiel P A, Shen M M, Liu D-J, Evans J W. J Phys Chem C, 2009, 113: 5047 [51] Ouyang R H, Liu J-X, Li W-X. J Am Chem Soc, 2013, 135: 1760 [52] Feibelman P J. Phys Rev Lett, 2000, 85: 606 [53] Horch S, Lorensen H T, Helveg S, Laegsgaard E, Stensgaard I, Jacobsen K W, Norskovt J K, Besenbacher F. Nature, 1999, 398: 134 [54] Lu J L, Gao H J, Shaikhutdinov S, Freund H J. Catal Lett, 2007, 114: 8 [55] Dent A J, Evans J, Fiddy S G, Jyoti B, Newton M A, Tromp M. Angew Chem Int Ed, 2007, 46: 5356 [56] Simonsen S B, Chorkendorff I,Dahl S, Skoglundh M, Sehested J, Helveg S. J Catal, 2011, 281: 147 [57] Sterrer M, Yulikov M, Risse T, Freund H J, Carrasco J, Illas F, Di Valentin C, Giordano L, Pacchioni G. Angew Chem Int Edit,2006, 45: 2633 [58] Haruta M. CATTECH, 2002, 6(3): 102 [59] Christensen C H, Norskov J K. Science, 2010, 327: 278 [60] Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169 [61] Blöchl P E. Phys Rev B, 1994, 50: 17953 [62] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Phys Rev B, 1992, 46: 6671 [63] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P. Phys Rev B, 1998, 57: 1505 [64] Rollmann G, Rohrbach A, Entel P, Hafner J. Phys Rev B, 2004, 69: 165107 [65] Bader R F W. Chem Rev, 1991, 91: 893 [66] Henkelman G, Uberuaga B P, Jonsson H. J Chem Phys, 2000, 113: 9901 [67] Coquet R, Howard K L, Willock D J. Chem Soc Rev, 2008, 37: 2046 [68] Goldman A S, Krogh-Jespersen K. J Am Chem Soc, 1996, 118: 12159 [69] Mavridis A, Harrison J F, Allison J. J Am Chem Soc, 1989, 111: 2482 [70] Barnes L A, Rosi M, Bauschlicher C W Jr. J Chem Phys, 1990, 93: 609 [71] Pacchioni G, Giordano L, Baistrocchi M. Phys Rev Lett, 2005, 94: 226104 [72] Ricci D, Bongiorno A, Pacchioni G, Landman U. Phys Rev Lett, 2006, 97: 036106 [73] Sicolo S, Giordano L, Pacchioni G. J Phys Chem C, 2009, 113: 16694 [74] Tao F, Salmeron M. Science, 2011, 331: 171 |
[1] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[2] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[3] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[4] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[5] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[6] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[7] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[8] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[9] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[10] | Chengcheng Chen, Fangting Liu, Qiaoyu Zhang, Zhengguo Zhang, Qiong Liu, Xiaoming Fang. Theoretical design and experimental study of pyridine-incorporated polymeric carbon nitride with an optimal structure for boosting photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 46(3): 91-102. |
[11] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[12] | Xiangyu Meng, Rui Li, Junyi Yang, Shiming Xu, Chenchen Zhang, Kejia You, Baochun Ma, Hongxia Guan, Yong Ding. Hexanuclear ring cobalt complex for photochemical CO2 to CO conversion [J]. Chinese Journal of Catalysis, 2022, 43(9): 2414-2424. |
[13] | Nan Li, Chuanyi Wang, Ke Zhang, Haiqin Lv, Mingzhe Yuan, Detlef W. Bahnemann. Progress and prospects of photocatalytic conversion of low-concentration NOx [J]. Chinese Journal of Catalysis, 2022, 43(9): 2363-2387. |
[14] | Jiang Zhang, Zijian Wang, Mugeng Chen, Yifeng Zhu, Yongmei Liu, Heyong He, Yong Cao, Xinhe Bao. N-doped carbon layer-coated Au nanocatalyst for H2-free conversion of 5-hydroxymethylfurfural to 5-methylfurfural [J]. Chinese Journal of Catalysis, 2022, 43(8): 2212-2222. |
[15] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||