Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (9): 1385-1394.DOI: 10.1016/S1872-2067(19)63334-6
• Articles • Previous Articles Next Articles
Zhong-Pan Hua, Jin-Tao Rena, Dandan Yanga, Zheng Wangb, Zhong-Yong Yuana
Received:
2019-01-20
Online:
2019-09-18
Published:
2019-07-06
Contact:
S1872-2067(19)63334-6
Supported by:
Zhong-Pan Hu, Jin-Tao Ren, Dandan Yang, Zheng Wang, Zhong-Yong Yuan. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: Effect of the pore structure and surface property[J]. Chinese Journal of Catalysis, 2019, 40(9): 1385-1394.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63334-6
[1] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782-5816. [2] M. M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark, M. J. MacLachlan, Chem. Soc. Rev., 2015, 44, 250-290. [3] W. Qi, P. Yan, D. S. Su, Acc. Chem. Res., 2018, 51, 640-648. [4] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613-10653. [5] L. Liu, Y. P. Zhu, M. Su, Z. Y. Yuan, ChemCatChem, 2015, 7, 2765-2787. [6] Z. Zhao, G. Ge, W. Li, X. Guo, G. Wang, Chin. J. Catal., 2016, 37, 644-670. [7] Y. P. Zhu, Y. Liu, Y. P. Liu, T. Z. Ren, T. Chen, Z. Y. Yuan, Chem-CatChem, 2015, 7, 2903-2909. [8] Q. Wang, Z. Zhang, M. Wang, J. Li, J. Fang, Y. Lai, Chin. J. Catal., 2018, 39, 1210-1218. [9] G. Wen, S. Wu, B. Li, C. Dai, D. S. Su, Angew. Chem. Int. Ed., 2015, 54, 4105-4109. [10] A. Sedrpoushan, M. Heidari, O. Akhavan, Chin. J. Catal., 2017, 38, 745-757. [11] L. Liu, S. D. Xu, F. Y. Wang, Y. J. Song, J. Liu, Z. M. Gao, Z. Y. Yuan, RSC Adv., 2017, 7, 12524-12533. [12] J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D. S. Su, Science, 2008, 322, 73-77. [13] C. Liang, H. Xie, V. Schwartz, J. Howe, S. Dai, S. H. Overbury, J. Am. Chem. Soc., 2009, 131, 7735-7741. [14] X. Liu, B. Frank, W. Zhang, T. P. Cotter, R. Schlögl, D. S. Su, Angew. Chem. Int. Ed., 2011, 50, 3318-3322. [15] J. Zhang, D. S. Su, R. Blume, R. Schlögl, R. Wang, X. Yang, A. Gajovic, Angew. Chem. Int. Ed., 2010, 49, 8640-8644. [16] W. Qi, W. Liu, B. Zhang, X. Gu, X. Guo, D. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228. [17] W. Qi, W. Liu, X. Guo, R. Schlögl, D. Su, Angew. Chem. Int. Ed., 2015, 54, 13682-13685. [18] Z. Zhao, Y. Dai, G. Ge, Catal. Sci. Technol., 2015, 5, 1548-1557. [19] Z. Zhao, Y. Dai, G. Ge, X. Guo, G. Wang, Green Chem., 2015, 17, 3723-3727. [20] Z. Zhao, Y. Dai, G. Ge, G. Wang, AIChE J., 2015, 61, 2543-2561. [21] Z. P. Hu, L. F. Zhang, Z. Wang, Z. Y. Yuan, J. Chem. Technol. Bio-technol., 2018, 93, 3410-3417. [22] Z. P. Hu, H. Zhao, C. Chen, Z. Y. Yuan, Catal. Today, 2018, 316, 214-222 [23] P. Poudel, Q. Qiao, Nano Energy, 2014, 4, 157-175. [24] M. Chen, L. L. Shao, X. Qian, L. Liu, T. Z. Ren, Z. Y. Yuan, Chem. Eng. J., 2014, 256, 23-31. [25] L. L. Shao, M. Chen, Z. Y. Yuan, J. Power Sources, 2014, 272, 1091-1099. [26] C. Chen, H. Wang, C. Han, J. Deng, J. Wang, M. Li, M. Tang, H. Jin, Y. Wang, J. Am. Chem. Soc., 2017, 139, 2657-2663. [27] J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang, Y. Wang, Green Chem., 2015, 17, 4053-4060. [28] J. Goscianska, R. Pietrzak, J. Matos, Catal. Today, 2018, 301, 204-216. [29] J. Matos, J. Laine, Appl. Catal. A, 2003, 241, 25-38. [30] J. Zhang, D. Su, A. Zhang, D. Wang, R. Schlögl, C. Hébert, Angew. Chem. Int. Ed., 2007, 46, 7319-7323. [31] D. S. Su, J. J. Delgado, X. Liu, D. Wang, R. Schlögl, L. Wang, Z. Zhang, Z. Shan, F. S. Xiao, Chem. Asian J., 2009, 4, 1108-1113. [32] Y. Song, G. Liu, Z. Y. Yuan, RSC Adv., 2016, 6, 94636-94642. [33] L. Li, W. Zhu, Y. Liu, L. Shi, H. Liu, Y. Ni, S. Liu, H. Zhou, Z. Liu, RSC Adv., 2015, 5, 56304-56310. [34] T. Y. Ma, L. Liu, Z. Y. Yuan, Chem. Soc. Rev., 2013, 42, 3977-4003. [35] L. Liu, Q. F. Deng, B. Agula, X. Zhao, T. Z. Ren, Z. Y. Yuan, Chem. Commun., 2011, 47, 8334-8336. [36] L. Liu, Q. F. Deng, B. Agula, T. Z. Ren, Y. P. Liu, B. Zhaorigetu, Z. Y. Yuan, Catal. Today, 2012, 186, 35-41. [37] C. Liang, S. Dai, J. Am. Chem. Soc., 2006, 128, 5316-5317. [38] L. Liu, F. Y. Wang, G. S. Shao, Z. Y. Yuan, Carbon, 2010, 48, 2089-2099. [39] D. Liu, J. H. Lei, L. P. Guo, D. Qu, Y. Li, B. L. Su, Carbon, 2012, 50, 476-487. [40] M. Kruk, M. Jaroniec, Chem. Mater., 2001, 13, 3169-3183. [41] J. C. Groen, L. A. A. Peffer, J. Pérez-Ramírez, Microporous Meso-porous Mater., 2003, 60, 1-17. [42] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Orfao, Carbon, 1999, 37, 1379-1389. [43] J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, J. J. M. Órfão, Ind. Eng. Chem. Res., 2007, 46, 4110-4115. [44] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon, 2008, 46, 833-840. [45] S. Kundu, Y. Wang, W. Xia, M. Muhler, J. Phys. Chem. C, 2008, 112, 16869-16878. [46] G. Hotová, V. Slovák, O. S. G. P. Soares, J. L. Figueiredo, M. F. R. Pereira, Carbon, 2018, 134, 255-263. [47] G. Wen, J. Diao, S. Wu, W. Yang, R. Schlögl, D. S. Su, ACS Catal., 2015, 5, 3600-3608. [48] W. Qi, W. Liu, B. Zhang, X. Gu, X. Guo, D. Su, Angew. Chem. Int. Ed., 2013, 52, 14224-14228. [49] H. Li, Y. Sun, Z. Y. Yuan, Y. P. Zhu, T. Y. Ma, Angew. Chem. Int. Ed., 2018, 57, 3222-3227. [50] Y. Wang, H. Zhao, G. Zhao, Appl. Catal. B, 2015, 164, 396-406. [51] H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, J. Gong, Appl. Catal. B, 2016, 181, 321-331. [52] C. A. Grande, A. E. Rodrigues, Ind. Eng. Chem. Res., 2001, 40, 1686-1693. [53] N. Rahimi, R. Karimzadeh, Appl. Catal. A, 2011, 398, 1-17. [54] Z. P. Hu, C. Chen, J. T. Ren, Z. Y. Yuan, Appl. Catal. A, 2018, 559, 85-93. |
[1] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[2] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[3] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[4] | Yanan Xing, Leilei Kang, Jingyuan Ma, Qike Jiang, Yang Su, Shengxin Zhang, Xiaoyan Xu, Lin Li, Aiqin Wang, Zhi-Pan Liu, Sicong Ma, Xiao Yan Liu, Tao Zhang. Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 48(5): 164-174. |
[5] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
[6] | Yu Wang, Jaime Gallego, Wei Wang, Phillip Timmer, Min Ding, Alexander Spriewald Luciano, Tim Weber, Lorena Glatthaar, Yanglong Guo, Bernd M. Smarsly, Herbert Over. Unveiling the self-activation of exsolved LaFe0.9Ru0.1O3 perovskite during the catalytic total oxidation of propane [J]. Chinese Journal of Catalysis, 2023, 54(11): 250-264. |
[7] | Hao Tian, Bingjun Xu. Oxidative co-dehydrogenation of ethane and propane over h-BN as an effective means for C-H bond activation and mechanistic investigations [J]. Chinese Journal of Catalysis, 2022, 43(8): 2173-2182. |
[8] | Ye Wang, Jingfeng Han, Nan Wang, Bing Li, Miao Yang, Yimo Wu, Zixiao Jiang, Yingxu Wei, Peng Tian, Zhongmin Liu. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation [J]. Chinese Journal of Catalysis, 2022, 43(8): 2259-2269. |
[9] | Hui Mao, Haoran Yang, Jinchi Liu, Shuai Zhang, Daliang Liu, Qiong Wu, Wenping Sun, Xi-Ming Song, Tianyi Ma. Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide [J]. Chinese Journal of Catalysis, 2022, 43(5): 1341-1350. |
[10] | Shi-Qun Cheng, Xue-Fei Weng, Qing-Nan Wang, Bai-Chuan Zhou, Wen-Cui Li, Ming-Run Li, Lei He, Dong-Qi Wang, An-Hui Lu. Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen [J]. Chinese Journal of Catalysis, 2022, 43(4): 1092-1100. |
[11] | Jinpeng Yin, Xin Jin, Hao Xu, Yejun Guan, Rusi Peng, Li Chen, Jingang Jiang, Peng Wu. Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation [J]. Chinese Journal of Catalysis, 2021, 42(9): 1561-1575. |
[12] | Li Ren, Bowen Wang, Kun Lu, Rusi Peng, Yejun Guan, Jin-gang Jiang, Hao Xu, Peng Wu. Selective conversion of methanol to propylene over highly dealuminated mordenite: Al location and crystal morphology effects [J]. Chinese Journal of Catalysis, 2021, 42(7): 1147-1159. |
[13] | Fangjun Shao, Zihao Yao, Yijing Gao, Qiang Zhou, Zhikang Bao, Guilin Zhuang, Xing Zhong, Chuan Wu, Zhongzhe Wei, Jianguo Wang. Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes [J]. Chinese Journal of Catalysis, 2021, 42(7): 1185-1194. |
[14] | Ling-Ling Guo, Jing Yu, Wei-Wei Wang, Jia-Xu Liu, Hong-Chen Guo, Chao Ma, Chun-Jiang Jia, Jun-Xiang Chen, Rui Si. Small-sized cuprous oxide species on silica boost acrolein formation via selective oxidation of propylene [J]. Chinese Journal of Catalysis, 2021, 42(2): 320-333. |
[15] | Renyang Zheng, Zaiku Xie. Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts [J]. Chinese Journal of Catalysis, 2021, 42(12): 2141-2148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||