Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (7): 1147-1159.DOI: 10.1016/S1872-2067(20)63726-3
• Articles • Previous Articles Next Articles
Li Ren, Bowen Wang, Kun Lu, Rusi Peng, Yejun Guan#(), Jin-gang Jiang, Hao Xu$(
), Peng Wu*(
)
Received:
2020-09-05
Accepted:
2020-10-10
Online:
2021-07-18
Published:
2020-12-10
Contact:
Yejun Guan,Hao Xu,Peng Wu
About author:
$ E-mail: hxu@chem.ecnu.edu.cnSupported by:
Li Ren, Bowen Wang, Kun Lu, Rusi Peng, Yejun Guan, Jin-gang Jiang, Hao Xu, Peng Wu. Selective conversion of methanol to propylene over highly dealuminated mordenite: Al location and crystal morphology effects[J]. Chinese Journal of Catalysis, 2021, 42(7): 1147-1159.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63726-3
Fig. 1. XRD patterns of the M-200 samples with different Si/Al ratios. (1) M-200(6); (2) M-200(51); (3) M-200(98); (4) M-200(171); (5) M-200(274); (6) M-200(436). The numbers in parentheses indicate the Si/Al atomic ratios, the same below.
Sample | Si/Al ratio | Surface area (m2 g-1) | Pore volume (cm3 g-1) | |||||
---|---|---|---|---|---|---|---|---|
Stotal a | Smicrob | Sext c | Vtotald | Vmicrob | Vmesoe | |||
M-200(6) | 6 | 494 | 481 | 13 | 0.27 | 0.19 | 0.08 | |
M-200(51) | 51 | 496 | 446 | 50 | 0.30 | 0.18 | 0.12 | |
M-200(98) | 98 | 493 | 445 | 48 | 0.32 | 0.18 | 0.14 | |
M-200(171) | 171 | 526 | 463 | 63 | 0.36 | 0.18 | 0.18 | |
M-200(274) | 274 | 525 | 477 | 48 | 0.35 | 0.19 | 0.16 | |
M-200(436) | 436 | 525 | 477 | 48 | 0.34 | 0.19 | 0.15 |
Table 1 Textural properties of various M-200 samples.
Sample | Si/Al ratio | Surface area (m2 g-1) | Pore volume (cm3 g-1) | |||||
---|---|---|---|---|---|---|---|---|
Stotal a | Smicrob | Sext c | Vtotald | Vmicrob | Vmesoe | |||
M-200(6) | 6 | 494 | 481 | 13 | 0.27 | 0.19 | 0.08 | |
M-200(51) | 51 | 496 | 446 | 50 | 0.30 | 0.18 | 0.12 | |
M-200(98) | 98 | 493 | 445 | 48 | 0.32 | 0.18 | 0.14 | |
M-200(171) | 171 | 526 | 463 | 63 | 0.36 | 0.18 | 0.18 | |
M-200(274) | 274 | 525 | 477 | 48 | 0.35 | 0.19 | 0.16 | |
M-200(436) | 436 | 525 | 477 | 48 | 0.34 | 0.19 | 0.15 |
Scheme 1. (a) Mordenite (MOR topology) structure showing four tetrahedral atoms (T1-T4) and ten oxygen atoms (O1-O10) with different locations. The main 12-MR channels and small 8-MR channels, parallelly running along the c-axis, are interconnected by 8-MR side pockets (marked in green and orange) along the b-axis. T1 is located in the junction of 8-MR and 12-MR pores, T2 and T4 are located in the intersection of 8-MR side pockets and 12-MR channels, while T3 is situate in the intersection of 8-MR side pockets and 8-MR channels, (b) 8-MR channels (marked in blue), 12-MR channels (marked in green) and the 8-MR side pockets interconnecting 12- and 8-MR channels (marked in orange) in the MOR structure.
Fig. 3. CD3CN adsorbed FT-IR spectra of various M-200 samples at 423 K. (a) M-200(6); (b) M-200(51); (c) M-200(98); (d) M-200(171); (e) M-200(274); (f) M-200(436).
Fig. 4. The changes of relative Al distributions with the Al content. ASP: the sum area of the 2315 and 2277 cm-1 bands related to the Al ions in 8-MR side pockets; A12MR: the area of 2297 cm-1 band associated to the Al ions in 12-MR; AF: the total area of 2277, 2297 and 2315 cm-1 bands assigned to the whole Al ions in framework.
Fig. 5. Methanol conversion and the product selectivities as a function of time on stream over M-200(6) (a) and M-200(274) (b). Reaction conditions: catalyst, 0.1 g; WHSV = 1 h-1; temperature, 723 K; N2 gas flow rate, 20 mL min-1.
Catalyst | MeOH conv. (%) | P/E ratio | HTI | ethylene/2MBu | Product selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2-40 | C2= | C3= | C4= | C5+N | Ar. | C2-4= | |||||
M-200(6) | 100 | 0.3 | 0.40 | 129.7 | 32.8 | 12.8 | 38.9 | 12.0 | 2.3 | 0.3 | 0.9 | 53.2 |
M-200(51) | 100 | 3.7 | 0.38 | 8.6 | 12.2 | 6.0 | 12.2 | 44.9 | 10.0 | 4.8 | 9.9 | 67.1 |
M-200(98) | 100 | 6.0 | 0.14 | 6.0 | 2.1 | 4.0 | 9.8 | 58.2 | 16.1 | 5.1 | 4.7 | 84.1 |
M-200(171) | 99.1 | 9.5 | 0.13 | 2.9 | 0.7 | 3.9 | 6.7 | 62.6 | 17.6 | 7.9 | 0.6 | 86.9 |
M-200(274) | 98.9 | 10.9 | 0.08 | 2.3 | 0.5 | 2.9 | 6.2 | 63.2 | 18.6 | 8.0 | 0.6 | 88.0 |
M-200(436) | 98.9 | 11.6 | 0.08 | 2.1 | 0.5 | 2.7 | 5.5 | 63.9 | 18.5 | 8.6 | 0.3 | 87.9 |
Table 2 The product distribution in the MTP reaction over the M-200(x) samples.
Catalyst | MeOH conv. (%) | P/E ratio | HTI | ethylene/2MBu | Product selectivity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CH4 | C2-40 | C2= | C3= | C4= | C5+N | Ar. | C2-4= | |||||
M-200(6) | 100 | 0.3 | 0.40 | 129.7 | 32.8 | 12.8 | 38.9 | 12.0 | 2.3 | 0.3 | 0.9 | 53.2 |
M-200(51) | 100 | 3.7 | 0.38 | 8.6 | 12.2 | 6.0 | 12.2 | 44.9 | 10.0 | 4.8 | 9.9 | 67.1 |
M-200(98) | 100 | 6.0 | 0.14 | 6.0 | 2.1 | 4.0 | 9.8 | 58.2 | 16.1 | 5.1 | 4.7 | 84.1 |
M-200(171) | 99.1 | 9.5 | 0.13 | 2.9 | 0.7 | 3.9 | 6.7 | 62.6 | 17.6 | 7.9 | 0.6 | 86.9 |
M-200(274) | 98.9 | 10.9 | 0.08 | 2.3 | 0.5 | 2.9 | 6.2 | 63.2 | 18.6 | 8.0 | 0.6 | 88.0 |
M-200(436) | 98.9 | 11.6 | 0.08 | 2.1 | 0.5 | 2.7 | 5.5 | 63.9 | 18.5 | 8.6 | 0.3 | 87.9 |
Fig. 6. (a) Dependence of propylene selectivity on the relative percentage of Al ions in 12-MR vs. the total Al ions; (b) Dependence of propylene selectivity, P/E ratio and MTP lifetime on the Al content. The propylene selectivity and P/E ratio were obtained at TOS = 2 h, while the lifetime is defined as the time period with methanol conversion over 80%. Reaction conditions: catalyst, 0.1 g; WHSV = 1 h-1; temperature, 723 K; N2 gas flow rate, 20 mL min-1.
Fig. 7. Methanol conversion and product selectivity as a function of reaction temperatures (a) and weight space velocities (b) over M-200(274) catalyst. Reaction conditions: catalyst, 0.1 g; N2 gas flow rate, 20 mL min-1; (a) WHSV = 1 h-1; (b) temperature, 723 K.
Catalyst | MeOH conv. (%) | P/E ratio | Product selectivity (%) | |||||
---|---|---|---|---|---|---|---|---|
C1-40 | C2= | C3= | C4= | C5+N | Ar. | |||
M-50(154) | 98.5 | 9.9 | 4.7 | 5.8 | 57.2 | 20.4 | 11.4 | 0.5 |
M-200(171) | 99.1 | 9.5 | 4.7 | 6.7 | 62.6 | 17.5 | 7.9 | 0.6 |
M-400(190) | 98.8 | 11.1 | 2.2 | 5.7 | 63.4 | 19.1 | 8.9 | 0.7 |
M-R(196) | 99.3 | 10.0 | 3.8 | 6.2 | 62.6 | 18.1 | 8.8 | 0.5 |
Table 3 The product distribution in the MTP reaction over the MOR zeolites with different morphologies at comparable Si/Al ratios.
Catalyst | MeOH conv. (%) | P/E ratio | Product selectivity (%) | |||||
---|---|---|---|---|---|---|---|---|
C1-40 | C2= | C3= | C4= | C5+N | Ar. | |||
M-50(154) | 98.5 | 9.9 | 4.7 | 5.8 | 57.2 | 20.4 | 11.4 | 0.5 |
M-200(171) | 99.1 | 9.5 | 4.7 | 6.7 | 62.6 | 17.5 | 7.9 | 0.6 |
M-400(190) | 98.8 | 11.1 | 2.2 | 5.7 | 63.4 | 19.1 | 8.9 | 0.7 |
M-R(196) | 99.3 | 10.0 | 3.8 | 6.2 | 62.6 | 18.1 | 8.8 | 0.5 |
Fig. 8. (a) Methanol conversion and propylene selectivity as a function of TOS over M-50(154) (1), M-200(171) (2), M-400(190) (3) and M-R(196) (4); (b) The propylene selectivity (TOS = 2 h) and the lifetime as a function of the crystal length along c-axis. Reaction conditions: catalyst, 0.1 g; WHSV = 1 h-1; temperature, 723 K; N2 gas flow rate, 20 mL min-1.
Fig. 9. GC-MS chromatograms of the hydrocarbon species retained on various used M-200 catalysts after MTP reaction at different temperature at TOS of 2 min. (1) M-200(6), 623 K; (2) M-200(274), 623 K; (3) M-200(274), 723 K. The MTP reaction conditions: catalyst, 0.1 g; WHSV = 1 h-1; N2 gas flow rate, 20 mL min-1.
|
[1] | Ye Wang, Jingfeng Han, Nan Wang, Bing Li, Miao Yang, Yimo Wu, Zixiao Jiang, Yingxu Wei, Peng Tian, Zhongmin Liu. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation [J]. Chinese Journal of Catalysis, 2022, 43(8): 2259-2269. |
[2] | Na Zhao, Ye Tian, Lifu Zhang, Qingpeng Cheng, Shuaishuai Lyu, Tong Ding, Zhenpeng Hu, Xinbin Ma, Xingang Li. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation [J]. Chinese Journal of Catalysis, 2019, 40(6): 895-904. |
[3] | Yongle Guo, Yu Zhang, Zhongkui Zhao. Ceria-modified hierarchical Hβ zeolite as a robust solid acid catalyst for alkenylation of p-xylene with phenylacetylene [J]. Chinese Journal of Catalysis, 2018, 39(1): 181-189. |
[4] | Lingzhi Yang, Zhiyuan Liu, Zhi Liu, Wenyong Peng, Yunqi Liu, Chenguang Liu. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction [J]. Chinese Journal of Catalysis, 2017, 38(4): 683-690. |
[5] | Meixia Wang, Shouying Huang, Jing Lü, Zaizhe Cheng, Ying Li, Shengping Wang, Xinbin Ma. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether [J]. Chinese Journal of Catalysis, 2016, 37(9): 1530-1538. |
[6] | Shayan Miar Alipour . Recent advances in naphtha catalytic cracking by nano ZSM-5: A review [J]. Chinese Journal of Catalysis, 2016, 37(5): 671-680. |
[7] | Leyla Vafi, Ramin Karimzadeh. A novel method for enhancing the stability of ZSM-5 zeolites used for catalytic cracking of LPG: Catalyst modification by dealumination and subsequent silicon loading [J]. Chinese Journal of Catalysis, 2016, 37(4): 628-635. |
[8] | Bo Tang, Weili Dai, Xiaoming Sun, Guangjun Wu, Landong Li, Naijia Guan, Michael Hunger. Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application [J]. Chinese Journal of Catalysis, 2015, 36(6): 801-805. |
[9] | Yangyang Yuan, LinyingWang, Hongchao Liu, PengTian, Miao Yang, Shutao Xu, ZhongminLiu. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance [J]. Chinese Journal of Catalysis, 2015, 36(11): 1910-1919. |
[10] | Huifu Xue, Xiumin Huang, Evert Ditzel, Ensheng Zhan, Meng Ma, Wenjie Shen. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate [J]. Chinese Journal of Catalysis, 2013, 34(8): 1496-1503. |
[11] | REN Xiu-Xiu, YANG Jian-Hua, CHEN Zan, YANG Xing-Bao, LU Jin-Ming, ZHANG Yan, WANG Jin-Qu. Preparation and Performance of Mordenite Zeolite Membrane Using Fluoride Route [J]. Chinese Journal of Catalysis, 2012, 33(9): 1558-1564. |
[12] | HUANG Xian-Liang, ZHANG Rong-Rong, WANG Zheng-Bao. Controlling Crystal Transformation between Zeolite ZSM-5 and Mordenite without Organic Structure-Directing Agent [J]. Chinese Journal of Catalysis, 2012, 33(8): 1290-1298. |
[13] | WANG Xi-Long, SONG Jin-Na, YE Xiu-Qun, GU Hai-Fang, HUANG Yao, NIU Guo-Xing. Deep Dealumination of Ultrafine NaY Zeolite [J]. Chinese Journal of Catalysis, 2012, 33(7): 1217-1223. |
[14] | LIU Xiao-Ling, WANG Yan, WANG Xu-Jin, ZHANG Ya-Fei, GONG Yan-Jun, XU Qing-Hu, XU Jun, DENG Feng, DOU Tao-. Characterization and Catalytic Performance in n-Hexane Cracking of HEU-1 Zeolites Dealuminated Using Hydrochloric Acid and Hydrothermal Treatments [J]. Chinese Journal of Catalysis, 2012, 33(12): 1889-1900. |
[15] | XIAO Li-Ping, YANG Jing, ZHOU Hui, CHEN Chun-Yu, SUN Shi-Ye, LOU Hui, ZHENG Xiao-Ming. Multi-step Dealumination and Incorporation of Titanium into the Framework of Natural Mordenite toward a Titanosilicate Catalyst [J]. Chinese Journal of Catalysis, 2012, 33(1): 199-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||