Chinese Journal of Catalysis ›› 2019, Vol. 40 ›› Issue (12): 1912-1923.DOI: 10.1016/S1872-2067(19)63433-9
• Articles • Previous Articles Next Articles
Yun-Cai Zhou, Xue-Yan Xu, Peng Wang, Huifen Fu, Chen Zhao, Chong-Chen Wang
Received:
2019-05-01
Revised:
2019-06-26
Online:
2019-12-18
Published:
2019-09-21
Supported by:
Yun-Cai Zhou, Xue-Yan Xu, Peng Wang, Huifen Fu, Chen Zhao, Chong-Chen Wang. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40(12): 1912-1923.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63433-9
[1] H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng, J. Hazard. Mater., 2017, 332, 79-86. [2] W. Huang, N. Liu, X. Zhang, M. Wu, L. Tang, Appl. Surf. Sci., 2017, 425, 107-116. [3] J. J. Testa, M. A. A. Grela, M. I. Litter, Environ. Sci. Technol., 2004, 38, 1589-1594. [4] Y. Zhang, M. Xu, H. Li, H. Ge, Z. Bian, Appl. Catal. B, 2018, 226, 213-219. [5] Y. Xing, X. Chen, D. Wang, Environ. Sci. Technol., 2007, 41, 1439-1443. [6] B. Galan, D. Castaneda, I. Ortiz, Water Res., 2005, 39, 4317-4324. [7] C. Lei, X. Zhu, B. Zhu, C. Jiang, Y. Le, J. Yu, J. Hazard. Mater., 2017, 321, 801-811. [8] G. Pugazhenthi, S. Sachan, N. Kishore, A. Kumar, J. Membr. Sci., 2005, 254, 229-239. [9] I. Heidmann, W. Calmano, J. Hazard. Mater., 2008, 152, 934-941. [10] R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, J. Hazard. Mater., 2015, 287, 364-372. [11] L. B. Khalil, W. E. Mourad, M. W. Rophael, Appl. Catal. B, 1998, 17, 267-273. [12] C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater., 2012, 223-224, 1-12. [13] H. Zhao, Q. Xia, H. Xing, D. Chen, H. Wang, ACS Sustain. Chem. Eng., 2017, 5, 4449-4456. [14] V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl. Catal. B, 2015, 170-171, 153-161. [15] Z. Wu, X. Yuan, J. Zhang, H. Wang, L. Jiang, G. Zeng, ChemCatChem, 2017, 9, 41-64. [16] Z. Sha, H. S. Chan, J. Wu, J. Hazard. Mater., 2015, 299, 132-140. [17] H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu, L. Jiang, H. Li, J. Hazard. Mater., 2015, 286, 187-194. [18] C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev, 2010, 39, 4206-4219. [19] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev, 2014, 43, 5234-5244. [20] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev., 2014, 114, 9919-9986. [21] C. Yu, Q. Fan, Y. Xie, J. Chen, Q. Shu, J. C. Yu, J. Hazard. Mater., 2012, 237-238, 38-45. [22] Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578. [23] Y. Feng, H. Li, L. Ling, S. Yan, D. Pan, H. Ge, H. Li, Z. Bian, Environ. Sci. Technol., 2018, 52, 7842-7848. [24] H. Ye, Y. Liu, S. Chen, H. Wang, Z. Liu, Z. Wu, Chin. J. Catal., 2019, 40, 631-637. [25] Y. Feng, L. Ling, J. Nie, K. Han, X. Chen, Z. Bian, H. Li, Z. L. Wang, ACS Nano, 2017, 11, 12411-12418. [26] C. Yu, L. Wei, J. Chen, Y. Xie, W. Zhou, Q. Fan, Ind. Eng. Chem. Res., 2014, 53, 5759-5766. [27] C. Yu, G. Li, S. Kumar, K. Yang, R. Jin, Adv. Mater., 2014, 26, 892-898. [28] S. Song, B. Cheng, N. Wu, A. Meng, S. Cao, J. Yu, Appl. Catal. B, 2016, 181, 71-78. [29] S. Li, X. Wang, Q. He, Q. Chen, Y. Xu, H. Yang, M. Lü, F. Wei, X. Liu, Chin. J. Catal., 2016, 37, 367-377. [30] H. Yu, W. Chen, X. Wang, Y. Xu, J. Yu, Appl. Catal. B, 2016, 187, 163-170. [31] C. Dong, K.-L. Wu, X.-W. Wei, X.-Z. Li, L. Liu, T.-H. Ding, J. Wang, Y. Ye, CrystEngComm, 2014, 16, 730-736. [32] J. Meng, Q. Chen, J. Lu, H. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 550-562. [33] A. Crake, K. C. Christoforidis, A. Kafizas, S. Zafeiratos, C. Petit, Appl. Catal. B, 2017, 210, 131-140. [34] Y. Su, Z. Zhang, H. Liu, Y. Wang, Appl. Catal. B, 2017, 200, 448-457. [35] R. Wang, L. Gu, J. Zhou, X. Liu, F. Teng, C. Li, Y. Shen, Y. Yuan, Adv. Mater. Interfaces, 2015, 2, 1500037. [36] C. Gomes Silva, I. Luz, F. X. Llabres i Xamena, A. Corma, H. Garcia, Chem.-Eur. J., 2010, 16, 11133-11138. [37] L. Shi, X. Meng, T. Wang, H. Zhang, K. Chang, H. Liu, J. Ye, Adv. Sci., 2015, 2, 1500006. [38] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Appl. Catal. B, 2016, 193, 198-216. [39] X.-H. Yi, F.-X. Wang, X.-D. Du, P. Wang, C.-C. Wang, Appl. Organomet. Chem., 2019, 33, 1-11. [40] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Dalton Trans., 2013, 42, 13649-13657. [41] Q. Xia, B. Huang, X. Yuan, H. Wang, Z. Wu, L. Jiang, T. Xiong, J. Zhang, G. Zeng, H. Wang, J. Colloid Interface Sci., 2018, 530, 481-492. [42] C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Energy Environ. Sci., 2014, 7, 2831-2867. [43] Q. Liang, M. Zhang, Z. Zhang, C. Liu, S. Xu, Z. Li, J. Alloys Compd., 2017, 690, 123-130. [44] X.-H. Yi, F.-X. Wang, X.-D. Du, H. Fu, C.-C. Wang, Polyhedron, 2018, 152, 216-224. [45] H. Li, S. Yao, H.-L. Wu, J.-Y. Qu, Z.-M. Zhang, T.-B. Lu, W. Lin, E.-B. Wang, Appl. Catal. B, 2018, 224, 46-52. [46] D. Guo, R. Wen, M. Liu, H. Guo, J. Chen, W. Weng, Appl. Organomet. Chem., 2015, 29, 690-697. [47] D. Azarifar, R. Ghorbani-Vaghei, S. Daliran, A. R. Oveisi, ChemCatChem, 2017, 9, 1992-2000. [48] J.-J. Zhou, R. Wang, X.-L. Liu, F.-M. Peng, C.-H. Li, F. Teng, Y.-P. Yuan, Appl. Surf. Sci., 2015, 346, 278-283. [49] N. Zhang, X. Zhang, C. Gan, J. Zhang, Y. Liu, M. Zhou, C. Zhang, Y. Fang, J. Photochem. Photobiol. A, 2019, 376, 305-315. [50] X.-Y. Xu, C. Chu, H. Fu, X.-D. Du, P. Wang, W. Zheng, C.-C. Wang, Chem. Eng. J., 2018, 350, 436-444. [51] X.-Y. Xu, J. Zhang, X. Zhao, H. Fu, C. Chu, P. Wang, C.-C. Wang, ACS Appl. Nano Mater., 2019, 2, 418-428. [52] H. R. Abid, J. Shang, H.-M. Ang, S. Wang, Int. J. Smart Nano Mater., 2013, 4, 72-82. [53] J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi, J. Gu, J. Mate. Chem. A, 2015, 3, 7445-7452. [54] Y. Ma, Z. Wang, X. Xu, J. Wang, Chin. J. Catal., 2017, 38, 1956-1969. [55] J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys., 2016, 18, 31175-31183. [56] D. K. Padhi, K. Parida, J. Mater. Chem. A, 2014, 2, 10300-10312. [57] B. Sun, E. P. Reddy, P. G. Smirniotis, Environ. Sci. Technol., 2005, 39, 6251-6259. [58] A. Liu, C. C. Wang, C. Z. Wang, H. F. Fu, W. Peng, Y. L. Cao, H. Y. Chu, A. F. Du, J. Colloid Interface Sci., 2018, 512, 730-739. [59] X. Zhou, C. Hu, X. Hu, T. Peng, J. Qu, J. Phys. Chem. C, 2010, 114, 2746-2750. [60] N. Fiol, C. Escudero, I. Villaescusa, Bioresource Technol., 2008, 99, 5030-5036. [61] L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys., 2015, 17, 117-121. [62] L. Shen, W. Wu, R. Liang, R. Lin, L. Wu, Nanoscale, 2013, 5, 9374-9382. [63] L. Shen, L. Huang, S. Liang, R. Liang, N. Qin, L. Wu, RSC Adv., 2014, 4, 2546-2549. [64] F. Chen, Q. Yang, Y. Wang, F. Yao, Y. Ma, X. Huang, X. Li, D. Wang, G. Zeng, H. Yu, Chem. Eng. J., 2018, 348, 157-170. [65] M. Xu, Y. Chen, J. Qin, Y. Feng, W. Li, W. Chen, J. Zhu, H. Li, Z. Bian, Environ. Sci. Technol., 2018, 52, 13879-13886. [66] K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chin. J. Catal., 2017, 38, 240-252. [67] W. Fa, P. Wang, B. Yue, F. Yang, D. Li, Z. Zheng, Chin. J. Catal., 2015, 36, 2186-2193. [68] Q. Liang, S. Cui, J. Jin, C. Liu, S. Xu, C. Yao, Z. Li, Appl. Surf. Sci., 2018, 456, 899-907. [69] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179. [70] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955. [71] X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Front. Environ. Sci. Eng., 2018, 12, 1-32. [72] G. Gebreslassie, P. Bharali, U. Chandra, A. Sergawie, P. K. Baruah, M. R. Das, E. Alemayehu, Appl. Organomet. Chemi., 2019, e5002. [73] J. C. Wang, J. Ren, H. C. Yao, L. Zhang, J. S. Wang, S. Q. Zang, L. F. Han, Z. J. Li, J. Hazard. Mater., 2016, 311, 11-19. [74] X. Hu, H. Ji, F. Chang, Y. Luo, Catal. Today, 2014, 224, 34-40. |
[1] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[2] | Zicong Jiang, Bei Cheng, Liuyang Zhang, Zhenyi Zhang, Chuanbiao Bie. A review on ZnO-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 52(9): 32-49. |
[3] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
[4] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[5] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[6] | Jiaming Li, Yuan Li, Xiaotian Wang, Zhixiong Yang, Gaoke Zhang. Atomically dispersed Fe sites on TiO2 for boosting photocatalytic CO2 reduction: Enhanced catalytic activity, DFT calculations and mechanistic insight [J]. Chinese Journal of Catalysis, 2023, 51(8): 145-156. |
[7] | Fei Yan, Youzi Zhang, Sibi Liu, Ruiqing Zou, Jahan B Ghasemi, Xuanhua Li. Efficient charge separation by a donor-acceptor system integrating dibenzothiophene into a porphyrin-based metal-organic framework for enhanced photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 51(8): 124-134. |
[8] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[9] | Haifeng Liu, Xiang Huang, Jiazang Chen. Surface electronic state modulation promotes photoinduced aggregation and oxidation of trace CO for lossless purification of H2 stream [J]. Chinese Journal of Catalysis, 2023, 51(8): 49-54. |
[10] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[11] | Huijie Li, Manzhou Chi, Xing Xin, Ruijie Wang, Tianfu Liu, Hongjin Lv, Guo-Yu Yang. Highly selective photoreduction of CO2 catalyzed by the encapsulated heterometallic-substituted polyoxometalate into a photo-responsive metal-organic framework [J]. Chinese Journal of Catalysis, 2023, 50(7): 343-351. |
[12] | Zizi Li, Jia-Wei Wang, Yanjun Huang, Gangfeng Ouyang. Enhancing CO2 photoreduction via the perfluorination of Co(II) phthalocyanine catalysts in a noble-metal-free system [J]. Chinese Journal of Catalysis, 2023, 49(6): 160-167. |
[13] | Mengistu Tulu Gonfa, Sheng Shen, Lang Chen, Biao Hu, Wei Zhou, Zhang-Jun Bai, Chak-Tong Au, Shuang-Feng Yin. Research progress on the heterogeneous photocatalytic selective oxidation of benzene to phenol [J]. Chinese Journal of Catalysis, 2023, 49(6): 16-41. |
[14] | Xiangxi Lou, Xuan Gao, Yu Liu, Mingyu Chu, Congyang Zhang, Yinghua Qiu, Wenxiu Yang, Muhan Cao, Guiling Wang, Qiao Zhang, Jinxing Chen. Highly efficient photothermal catalytic upcycling of polyethylene terephthalate via boosted localized heating [J]. Chinese Journal of Catalysis, 2023, 49(6): 113-122. |
[15] | Zhidong Wei, Jiawei Yan, Weiqi Guo, Wenfeng Shangguan. Nanoscale lamination effect by nitrogen-deficient polymeric carbon nitride growth on polyhedral SrTiO3 for photocatalytic overall water splitting: Synergy mechanism of internal electrical field modulation [J]. Chinese Journal of Catalysis, 2023, 48(5): 279-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||