Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (10): 1645-1653.DOI: 10.1016/S1872-2067(19)63512-6
• Articles • Previous Articles Next Articles
Changzhi Aia,b, Li Tongb, Zhipeng Wanga,b, Xidong Zhanga,b, Guizhen Wangb, Shengjue Dengc, Jin Lid, Shiwei Lina,b
Received:
2020-02-21
Revised:
2020-03-29
Online:
2020-10-18
Published:
2020-08-15
Supported by:
Changzhi Ai, Li Tong, Zhipeng Wang, Xidong Zhang, Guizhen Wang, Shengjue Deng, Jin Li, Shiwei Lin. Facile synthesis and photoelectrochemical properties of novel TiN/C3N4/CdS nanotube core/shell arrays[J]. Chinese Journal of Catalysis, 2020, 41(10): 1645-1653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(19)63512-6
[1] T. A. Faunce, W. Lubitz, A. W. Rutherford, D. R. MacFarlane, G. F. Moore, P. D. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring, Energy Environ. Sci., 2013, 6, 695-698. [2] K. Li, D. Martin, J. Tang, Chin. J. Catal., 2011, 32, 879-890. [3] J. Go?a?, K. Zar?bska, K. Nosek, K. Szramowiat-Sala, M. Marczak, Environ. Sci. Pollut. Res., 2019, 26, 8359-8361. [4] M. Wang, Y. Boyjoo, J. Pan, S. Wang, J. Liu, Chin. J. Catal., 2017, 38, 970-990. [5] W. K. Jo, R. J. Tayade, Chin. J. Catal., 2014, 35, 1781-1792. [6] N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103, 15729-15735. [7] J. Barber, Chem. Soc. Rev., 2009, 38, 185-196. [8] T. D. Lee, A. U. Ebong, Renew. Sustain. Energy Rev., 2017, 70, 1286-1297. [9] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovolt, 2015, 23, 1-9. [10] P. Sun, X. Zhang, C. Wang, Y. Wei, L. Wang, Y. Liu, J. Mater. Chem. A, 2013, 1, 3309-3314. [11] C. Xu, P. Ravi Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Chem. Soc. Rev., 2019, 48, 3868-3902. [12] A. Meng, L. Zhang, B. Cheng, J. Yu, Adv. Mater., 2019, 1807660. [13] Q. Gui, Z. Xu, H. Zhang, C. Cheng, X. Zhu, M. Yin, Y. Song, L. Lu, X. Chen, D. Li, ACS Appl. Mater. Interfaces, 2014, 6, 17053-17058. [14] R. Shen, C. Jiang, Q. Xiang, J. Xie, X. Li, Appl. Surf. Sci., 2019, 471, 43-87. [15] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179. [16] J. Xia, Y. Li, H. Wang, R. L. Stanford, G. Pan, S. L. Yu, Front. Environ. Sci. Eng., 2018, 12, 1-9. [17] J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci., 2017, 391, 72-123. [18] J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Chin. J. Catal., 2019, 40, 380-389. [19] R. D. Padmaja, S. Rej, C. K. Sourav, Chin. J. Catal., 2017, 38, 1918-1924. [20] F. Chen, H. Yang, X. Wang, H. Yu, Chin. J. Catal., 2017, 38, 296-304. [21] Q. Zhou, J. Zhou, M. Zeng, G. Wang, Y. Chen, S. Lin, Nanoscale Res. Lett., 2017, 12, 261-269. [22] J. Zhou, S. Lin, Y. Chen, A. M. Gaskov, Appl. Surf. Sci., 2017, 403, 274-281. [23] C. Ai, P. Xie, X. Zhang, X. Zheng, J. Li, S. Lin, ACS Sustain. Chem. Eng., 2019, 7, 5274-5282. [24] X. Zhang, M. Zeng, J. Zhang, A. Song, S. Lin, RSC Adv., 2016, 6, 8118-8126. [25] A. J. Gardecka, C. Bishop, D. Lee, S. Corby, I. P. Parkin, A. Kafizas, S. Krumdieck, Appl. Catal. B:Environ., 2018, 224, 904-911. [26] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A. A. Alexey, Nat. Mater., 2013, 12, 798-801. [27] Q. Nie, L. Yang, C. Cao, Y. Zeng, G. Wang, C. Wang, S. Lin, Chem. Eng. J., 2017, 325, 151-159. [28] D. Zhao, C. F. Yang, Renew. Sustain. Energy Rev., 2016, 54, 1048-1059. [29] H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B:Environ., 2019, 242, 76-84. [30] Y. Ren, D. Zeng, W. J. Ong, Chin. J. Catal., 2019, 40, 289-319. [31] D. Zeng, W. Xu, W. J. Ong, J. Xu, H. Ren, Y. Chen, H. Zheng, D. L. Peng, Appl. Catal. B Environ., 2018, 221, 47-55. [32] F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, Q. Zhang, Y. Wang, K. Yao, W. Lv, G. Liu, Appl. Catal. B:Environ., 2017, 207, 103-113. [33] K. He, J. Xie, Z. Yang, R. Shen, Y. Fang, S. Ma, X. Chen, X. Li, Catal. Sci. Technol., 2017, 7, 1193-1202. [34] R. Shen, J. Xie, X. Lu, X. Chen, X. Li, ACS Sustain. Chem. Eng., 2018, 6, 4026-4036. [35] H. Yang, S. Zhang, R. Cao, X. Deng, Z. Li, X. Xu, Sci. Rep., 2017, 7, 8686. [36] Y. Zhang, A. Thomas, M. Antonietti, X. Wang, J. Am. Chem. Soc., 2009, 131, 50-51. [37] L. R. Kong, X. J. Mu, X. X. Fan, R. Li, Y. T. Zhang, P. Song, F. C. Ma, M. T. Sun, Appl. Mater. Today, 2018, 13, 329-338. [38] S. Patnaik, D. P. Sahoo, K. Parida, Renew. Sustain. Energy Rev., 2018, 82, 1297-1312. [39] Y. Song, J. Qi, J. Tian, S. Gao, F. Cui, Chem. Eng. J., 2018, 341, 547-555. [40] K. Yang, X. Li, C. Yu, D. Zeng, F. Chen, K. Zhang, W. Huang, H. Ji, Chin. J. Catal., 2019, 40, 796-818. [41] Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian, X. Xu, X. Duan, H. Sun, M. O Tade, S. Wang, Appl. Catal. B:Environ., 2018, 228, 64-74. [42] W. J. Ong, L. L. Tan, S. P. Chai, S. T. Yong, A. R. Mohamed, Nano Energy, 2015, 13, 757-770. [43] J. Ge, Y. Liu, D. Jiang, L. Zhang, P. Du, Chin. J. Catal., 2019, 40, 160-167. [44] C. Liu, N. P. Dasgupta, P. Yang, Chem. Mater., 2014, 26, 415-422. [45] X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Nano Lett., 2012, 12, 5376-5381. [46] J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503. [47] W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev., 2016, 116, 7159-7329. [48] Y. Liu, Y. Cui, F. Huang, X. Yang, RSC Adv., 2016, 6, 16668-16672. [49] Z. G. Zhao, Z. F. Liu, M. Miyauchi, Adv. Funct. Mater., 2010, 20, 4162-4167. [50] Z. Chen, G. Ma1, Z. Chen, Y. Zhang, Z. Zhang, J. Gao, Q. Meng, M. Yuan, X. Wang, J. Liu, G. Zhou, Appl. Surf. Sci., 2017, 396, 609-615. [51] D. Mandrino, B. Podgornik, Appl. Surf. Sci., 2017, 396, 554-559. [52] S. Shen, X. Wang, T. Chen, Z. Feng, C. Li, J. Phys. Chem. C, 2014,118, 12661-12668. [53] Y. H. Cheng, B. K. Tay, S. P. Lau, H. Kupfer, F. Richter, J. Appl. Phys., 2002, 92, 1845-1849. [54] M. Sumathi, A. Prakasam, P. M. Anbarasan, J. Mater. Sci. Mater. Electron., 2019, 30, 3294-3304. [55] Z. Xie, X. Liu, P. Zhan, W. Wang, Z. Zhang, AIP Adv., 2013, 3, 062129/1-062129/7. [56] N. C. Saha, H. G. Tompkins, J. Appl. Phys., 1992, 72, 3072-3079. [57] C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Nano-Micro Lett., 2018, 10, 37/1-37/13. [58] L. Zhao, J. Jia, Z. Yang, J. Yu, A. Wang, Y. Sang, W. Zhou, H. Liu, Appl. Catal. B:Environ., 2017, 210, 290-296. [59] M. Zeng, X. Peng, J. Liao, G. Wang, Y. Li, J. Li, Y. Qin, J. Wilson, A. Song, S. Lin, Phys. Chem. Chem. Phys., 2016, 18, 17404-17413. [60] Y. Li, Y. Fang, Z. Cao, N. Li, D. Chen, Q. Xu, J. Lu, Appl. Catal. B:Environ., 2019, 250, 150-162. [61] X. Wang, J. Yan, H. Ji, Z. Chen, Y. Xu, L. Huang, Q. Zhang, Y. Song, H. Xu, H. Li, Springerplus, 2016, 5, 1-13. [62] K. Dai, L. Lu, Q. Liu, G. Zhu, X. Wei, J. Bai, L. Xuan, H. Wang, Dalton Trans., 2014, 43, 6295-6299. [63] X. She, L. Liu, H. Ji, Z. Mo, Y. Li, L. Huang, D. Du, H. Xu, H. Li, Appl. Catal. B:Environ., 2016, 187, 144-153. [64] C. Liang, H. Guo, L. Zhang, M. Ruan, C. G. Niu, H. P. Feng, X. J. Wen, N. Tang, H. Y. Liu, G. M. Zeng, Chem. Eng. J., 2019, 372, 12-25. [65] X. Zheng, L. Yang, Y. Li, L. Yang, S. Luo, Electrochim. Acta, 2019, 298, 663-669. [66] T. Kim, V. G. Parale, H.-N.-R. Jung, Y. Kim, Z. Driss, D. Driss, A. Bouabidi, S. Euchy, H.-H. Park, Nanomaterials, 2019, 9, 358. [67] Y. Qin, H. Li, J. Lu, Y. Yan, Z. Lu, X. Liu, Chin. J. Catal., 2018, 39, 1470-1483. [68] Shi, J. Chen, Z. Mao, B. D. Fahlman, D. Wang, J. Catal., 2017, 356, 22-31. [69] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, Z. Kang, Science, 2015, 347, 970-974. [70] J. Liu, J. Phys. Chem. C, 2015, 119, 28417-28423. [71] P. P. Li, Y. Cao, C. J. Mao, B. K. Jin, J. J. Zhu, Anal. Chem., 2019, 91, 1563-1570. [72] J. Li, W. Wei, C. Mu, B. Huang, Y. Dai, Phys. E Low-Dimensional Syst. Nanostructures, 2018, 103, 459-463. |
[1] | Wei Qiao, Lice Yu, Jinfa Chang, Fulin Yang, Ligang Feng. Efficient bi-functional catalysis of coupled MoSe2 nanosheet/Pt nanoparticles for methanol-assisted water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 113-123. |
[2] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[3] | Shijie Li, Chunchun Wang, Kexin Dong, Peng Zhang, Xiaobo Chen, Xin Li. MIL-101(Fe)/BiOBr S-scheme photocatalyst for promoting photocatalytic abatement of Cr(VI) and enrofloxacin antibiotic: Performance and mechanism [J]. Chinese Journal of Catalysis, 2023, 51(8): 101-112. |
[4] | Xin Yuan, Hai-Bin Fan, Jie Liu, Long-Zhou Qin, Jian Wang, Xiu Duan, Jiang-Kai Qiu, Kai Guo. Recent advances in photoredox catalytic transformations by using continuous-flow technology [J]. Chinese Journal of Catalysis, 2023, 50(7): 175-194. |
[5] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[6] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[7] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. Non-noble metal single atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 50(7): 195-214. |
[8] | Xiangxi Lou, Xuan Gao, Yu Liu, Mingyu Chu, Congyang Zhang, Yinghua Qiu, Wenxiu Yang, Muhan Cao, Guiling Wang, Qiao Zhang, Jinxing Chen. Highly efficient photothermal catalytic upcycling of polyethylene terephthalate via boosted localized heating [J]. Chinese Journal of Catalysis, 2023, 49(6): 113-122. |
[9] | Zhidong Wei, Jiawei Yan, Weiqi Guo, Wenfeng Shangguan. Nanoscale lamination effect by nitrogen-deficient polymeric carbon nitride growth on polyhedral SrTiO3 for photocatalytic overall water splitting: Synergy mechanism of internal electrical field modulation [J]. Chinese Journal of Catalysis, 2023, 48(5): 279-289. |
[10] | Jianxin Feng, Xuan Li, Yucheng Luo, Zhifang Su, Maoling Zhong, Baolan Yu, Jianying Shi. Microenvironment regulation of Ru(bda)L2 catalyst incorporated in metal-organic framework for effective photo-driven water oxidation [J]. Chinese Journal of Catalysis, 2023, 48(5): 127-136. |
[11] | Yanchang Liu, Xinlong Tian, Ye-Chuang Han, Yanan Chen, Wenbin Hu. High-temperature shock synthesis of high-entropy-alloy nanoparticles for catalysis [J]. Chinese Journal of Catalysis, 2023, 48(5): 66-89. |
[12] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[13] | Dan Zhang, Yue Shi, Xilei Chen, Jianping Lai, Bolong Huang, Lei Wang. High-entropy alloy metallene for highly efficient overall water splitting in acidic media [J]. Chinese Journal of Catalysis, 2023, 45(2): 174-183. |
[14] | Yujie Li, Yuanyuan Liu, Zeyan Wang, Peng Wang, Zhaoke Zheng, Hefeng Cheng, Ying Dai, Baibiao Huang. Enhanced photocatalytic H2O2 production over Pt(II) deposited boron containing metal-organic framework via suppressing the simultaneous decomposition [J]. Chinese Journal of Catalysis, 2023, 45(2): 132-140. |
[15] | Xiaoning Li, Chongyan Hao, Yumeng Du, Yun Lu, Yameng Fan, Mingyue Wang, Nana Wang, Ruijin Meng, Xiaolin Wang, Zhichuan J. Xu, Zhenxiang Cheng. Harnessing magnetic fields to accelerate oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 55(12): 191-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||