Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (10): 1633-1644.DOI: 10.1016/S1872-2067(20)63571-9
• Articles • Previous Articles Next Articles
Junhui Zhoua, Guanlan Liua, Quanguo Jiangb, Weina Zhaoa, Zhimin Aoa, Taicheng Ana
Received:
2020-02-21
Revised:
2020-03-23
Online:
2020-10-18
Published:
2020-08-15
Supported by:
Junhui Zhou, Guanlan Liu, Quanguo Jiang, Weina Zhao, Zhimin Ao, Taicheng An. Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer (MXene) for HCHO oxidation[J]. Chinese Journal of Catalysis, 2020, 41(10): 1633-1644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63571-9
[1] S. Li, X. Lu, W. Guo, H. Zhu, M. Li, L. Zhao, Y. Li, H. Shan, J. Organomet. Chem., 2012, 704, 38-48. [2] C. Zhang, H. He, Catal. Today, 2007, 126, 345-350. [3] M. Wen, G. Li, H. Liu, J. Chen, T. An, H. Yamashita, Environ. Sci. Nano, 2019, 6, 1006-1025. [4] H. Nakayama, A. Hayashi, T. Eguchi, N. Nakamura, M. Tsuhako, Solid State Sci., 2002, 4, 1067-1070. [5] Y. Su, Z. Ao, Y. Ji, G. Li, T. An, Appl. Surf. Sci., 2018, 450, 484-491. [6] Y. Su, W. Li, G. Li, Z. Ao, T. An, Chin. J. Catal., 2019, 40, 664-672. [7] B. Liu, W. Zhao, Q. Jiang, Z. Ao, T. An, Sustain. Mater. Technol., 2019, 21, e00103. [8] H. P. Zhang, X. G. Luo, X. G. Lin, X. Lu, Y. Leng, H. T. Song, Appl. Surf. Sci., 2013, 283, 559-565. [9] M. Jing, W. Song, L. Chen, S. Ma, J. Deng, H. Zheng, Y. Li, J. Liu, Z. Zhao, J. Phys. Chem. C, 2017, 122, 438-448. [10] C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. FlytzaniStephanopoulos, H. He, Angew. Chem. Int. Ed., 2012, 51, 9628-9632. [11] C. Li, Y. Shen, M. Jia, S. Sheng, M. O. Adebajo, H. Zhu, Catal. Commun., 2008, 9, 355-361. [12] Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today, 2016, 264, 270-278. [13] T. N. Obee, R. T. Brown, Environ. Sci. Technol., 1995, 29, 1223-1231. [14] J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys., 2013, 15, 16883-16890. [15] J. Li, W. Zhao, J. Wang, S. Song, X. Wu, G. Zhang, Appl. Surf. Sci., 2018, 458, 59-69. [16] C. Sheng, C. Wang, H. Wang, C. Jin, Q. Sun, S. Li, J. Hazard. Mater., 2017, 328, 127-139. [17] M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ., 2016, 140, 117-134. [18] Y. Shen, X. Yang, Y. Wang, Y. Zhang, H. Zhu, L. Gao, M. Jia, Appl. Catal. B, 2008, 79, 142-148. [19] S. Liu, P. Jin, D. Zhang, C. Hao, X. Yang, Appl. Surf. Sci., 2013, 265, 443-451. [20] Z. Xu, J. Yu, M. Jaroniec, Appl. Catal. B, 2015, 163, 306-312. [21] C. Zhang, H. He, K. I. Tanaka, Appl. Catal. B, 2006, 65, 37-43. [22] H. Huang, D. Y. C. Leung, J. Catal., 2011, 280, 60-67. [23] F. Liu, J. Shen, D. Xu, W. Zhou, S. Zhang, L. Wan, Chem. Eng. J., 2018, 334, 2283-2292. [24] Z. Huang, X. Gu, Q. Cao, P. Hu, J. Hao, J. Li, X. Tang, Angew. Chem. Int. Ed., 2012, 51, 4198-4203. [25] H. Huang, X. Ye, H. Huang, L. Zhang, D. Y. C. Leung, Chem. Eng. J., 2013, 230, 73-79. [26] J. Y. Bo, S. Zhang, K. H. Lim, Catal. Lett., 2009, 129, 444-448. [27] C. Robert Dennis, I. M. Potgieter, S. S. Basson, React. Kinet. Mech. Catal., 2011, 104, 1-7. [28] C. Cheng, X. Zhang, M. Wang, S. Wang, Z. Yang, Phys. Chem. Chem. Phys., 2018, 20, 3504-3513. [29] F. Li, Y. Li, C. Z. Xiao, Z. Chen, ACS Catal., 2015, 5, 544-552. [30] Z. Z. Lin, Carbon, 2016, 108, 343-350. [31] Q. G. Jiang, Z. M. Ao, S. Li, Z. Wen, RSC Adv., 2014, 4, 20290-20296. [32] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634-641. [33] J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang, X. Wang, J. Liang, J. Li, J. Liu, T. Zhang, J. Am. Chem. Soc., 2013, 135, 15314-15317. [34] J. X. Liang, J. Lin, X. F. Yang, A. Q. Wang, B. T. Qiao, J. Liu, T. Zhang, J. Li, J. Phys. Chem. C, 2014, 118, 21945-21951. [35] H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun, H. Cheng, W. Liu, C. Wang, J. Li, X. Huang, T. Yao, J. Yang, S. Wei, J. Lu, Nat. Commun., 2017, 8, 1070. [36] J. Liu, ACS Catal., 2016, 7, 34-59. [37] Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon, 2010, 48, 1124-1130. [38] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469-472. [39] L. Wang, L. Shen, X. Xu, L. Xu, Y. Qian, RSC Adv., 2012, 2, 10689-10693. [40] X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc., 2009, 131, 11658-11659. [41] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano, 2012, 6, 1322-1331. [42] M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi, Electrochem. Commun., 2012, 16, 61-64. [43] M. Naguib, M. Kurtoglu, V. Preeser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater., 2011, 23, 4248-4253. [44] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater., 2014, 26, 992-1005. [45] P. Eklund, J. Rosen, P. O. Å. Persson, J. Phys. D:Appl. Phys., 2017, 50, 113001. [46] X. F. Yu, Y. C. Li, J. B. Cheng, Z. B. Liu, Q. Z. Li, W. Z. Li, X. Yang, B. Xiao, ACS Appl. Mater. Interfaces, 2015, 7, 13707-13713. [47] S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, B. Anasori, C. K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi, H. T. Jung, ACS Nano, 2018, 12, 986-993. [48] X. Zhang, J. Lei, D. Wu, X. Zhao, Y. Jing, Z. Zhou, J. Mater. Chem. A, 2016, 4, 4871-4876. [49] X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, J. Mater. Chem. A, 2017, 5, 12899-12903. [50] Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc., 2012, 134, 16909-16916. [51] M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Acc. Chem. Res., 2018, 51, 591-599. [52] M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science, 2013, 341, 1502-1505. [53] H. Zhang, G. Yang, X. Zuo, H. Tang, Q. Yang, G. Li, J. Mater. Chem. A, 2016, 4, 12913-12920. [54] N. K. Chaudhari, H. Jin, B. Kim, D. San Baek, S. H. Joo, K. Lee, J. Mater. Chem. A, 2017, 5, 24564-24579. [55] Y. Gao, H. Zhuo, Y. Cao, X. Sun, G. Zhuang, S. Deng, X. Zhong, Z. Wei, J. Wang, Chin. J. Catal., 2019, 40, 152-159. [56] L. Yi, C. Wen, G. Yun, G. Lu, Y. Wang, J. Phys. Chem. C, 2010, 114, 9889-9897. [57] H. Wu, S. Ma, W. Song, E. J. M. Hensen, J. Phys. Chem. C, 2016, 120, 13071-13077. [58] B. Delley, J. Chem. Phys., 2000, 113, 7756-7764. [59] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868. [60] A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 2009, 102, 073005/1-073005/4. [61] B. Delley, Phys. Rev. B, 2002, 66, 155125/1-155125/9. [62] B. Delley, J. Chem. Phys., 1990, 92, 508-517. [63] S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys., 2001, 73, 515-562. [64] A. Deb, J. M. Ralph, E. J. Cairns, U. Bergmann, Phys. Rev. B, 2006, 73, 115114/1-115114/9. [65] W. Frey, J. Y. Lee, V. Jaeger, Z. Kristallogr. New Cryst. Struct., 2005, 220, 567-568. [66] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.:Condens. Matter, 2002, 14, 2717-2744. [67] D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett., 1979, 43, 1494-1497. [68] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225-232. [69] G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys., 2000, 113, 9901-9904. [70] Y. Zhao, J. Zhao, Appl. Surf. Sci., 2017, 412, 591-598. [71] S. Kozuch, S. Shaik, Acc. Chem. Res., 2011, 44, 101-110. [72] R. G. Parr, L. J. Bartolotti, J. Am. Chem. Soc., 1982, 104, 3801-3803. [73] C. Kittel, Introduction to solid state physics, Wiley New York, 1976. [74] H. P. Bonzel, R. Ku, J. Vac. Sci. Technol., 1972, 9, 663-667. [75] B. C. Sales, J. E. Turner, M. B. Maple, Surf. Sci., 1982, 114, 381-394. [76] J. W. Li, K. L. Pan, S. J. Yu, S. Y. Yan, M. B. Chang, J. Environ. Sci., 2014, 26, 2546-2553. [77] J. Pei, X. Han, Y. Lu, Build. Environ., 2015, 84, 134-141. [78] B. Bai, H. Arandiyan, J. Li, Appl. Catal. B, 2013, 142, 677-683.Y. Su, W. Li, G. Li, Z. Ao, T. An, Chin. J. Catal., 2019, 40, 664-672. [7] B. Liu, W. Zhao, Q. Jiang, Z. Ao, T. An, Sustain. Mater. Technol., 2019, 21, e00103. [8] H. P. Zhang, X. G. Luo, X. G. Lin, X. Lu, Y. Leng, H. T. Song, Appl. Surf. Sci., 2013, 283, 559-565. [9] M. Jing, W. Song, L. Chen, S. Ma, J. Deng, H. Zheng, Y. Li, J. Liu, Z. Zhao, J. Phys. Chem. C, 2017, 122, 438-448. [10] C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. FlytzaniStephanopoulos, H. He, Angew. Chem. Int. Ed., 2012, 51, 9628-9632. [11] C. Li, Y. Shen, M. Jia, S. Sheng, M. O. Adebajo, H. Zhu, Catal. Commun., 2008, 9, 355-361. [12] Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today, 2016, 264, 270-278. [13] T. N. Obee, R. T. Brown, Environ. Sci. Technol., 1995, 29, 1223-1231. [14] J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys., 2013, 15, 16883-16890. [15] J. Li, W. Zhao, J. Wang, S. Song, X. Wu, G. Zhang, Appl. Surf. Sci., 2018, 458, 59-69. [16] C. Sheng, C. Wang, H. Wang, C. Jin, Q. Sun, S. Li, J. Hazard. Mater., 2017, 328, 127-139. [17] M. S. Kamal, S. A. Razzak, M. M. Hossain, Atmos. Environ., 2016, 140, 117-134. [18] Y. Shen, X. Yang, Y. Wang, Y. Zhang, H. Zhu, L. Gao, M. Jia, Appl. Catal. B, 2008, 79, 142-148. [19] S. Liu, P. Jin, D. Zhang, C. Hao, X. Yang, Appl. Surf. Sci., 2013, 265, 443-451. [20] Z. Xu, J. Yu, M. Jaroniec, Appl. Catal. B, 2015, 163, 306-312. [21] C. Zhang, H. He, K. I. Tanaka, Appl. Catal. B, 2006, 65, 37-43. [22] H. Huang, D. Y. C. Leung, J. Catal., 2011, 280, 60-67. [23] F. Liu, J. Shen, D. Xu, W. Zhou, S. Zhang, L. Wan, Chem. Eng. J., 2018, 334, 2283-2292. [24] Z. Huang, X. Gu, Q. Cao, P. Hu, J. Hao, J. Li, X. Tang, Angew. Chem. Int. Ed., 2012, 51, 4198-4203. [25] H. Huang, X. Ye, H. Huang, L. Zhang, D. Y. C. Leung, Chem. Eng. J., 2013, 230, 73-79. [26] J. Y. Bo, S. Zhang, K. H. Lim, Catal. Lett., 2009, 129, 444-448. [27] C. Robert Dennis, I. M. Potgieter, S. S. Basson, React. Kinet. Mech. Catal., 2011, 104, 1-7. [28] C. Cheng, X. Zhang, M. Wang, S. Wang, Z. Yang, Phys. Chem. Chem. Phys., 2018, 20, 3504-3513. [29] F. Li, Y. Li, C. Z. Xiao, Z. Chen, ACS Catal., 2015, 5, 544-552. [30] Z. Z. Lin, Carbon, 2016, 108, 343-350. [31] Q. G. Jiang, Z. M. Ao, S. Li, Z. Wen, RSC Adv., 2014, 4, 20290-20296. [32] B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem., 2011, 3, 634-641. [33] J. Lin, A. Wang, B. Qiao, X. Liu, X. Yang, X. Wang, J. Liang, J. Li, J. Liu, T. Zhang, J. Am. Chem. Soc., 2013, 135, 15314-15317. [34] J. X. Liang, J. Lin, X. F. Yang, A. Q. Wang, B. T. Qiao, J. Liu, T. Zhang, J. Li, J. Phys. Chem. C, 2014, 118, 21945-21951. [35] H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun, H. Cheng, W. Liu, C. Wang, J. Li, X. Huang, T. Yao, J. Yang, S. Wei, J. Lu, Nat. Commun., 2017, 8, 1070. [36] J. Liu, ACS Catal., 2016, 7, 34-59. [37] Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon, 2010, 48, 1124-1130. [38] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, Science, 2002, 295, 469-472. [39] L. Wang, L. Shen, X. Xu, L. Xu, Y. Qian, RSC Adv., 2012, 2, 10689-10693. [40] X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, J. Am. Chem. Soc., 2009, 131, 11658-11659. [41] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano, 2012, 6, 1322-1331. [42] M. Naguib, J. Come, B. Dyatkin, V. Presser, P. L. Taberna, P. Simon, M. W. Barsoum, Y. Gogotsi, Electrochem. Commun., 2012, 16, 61-64. [43] M. Naguib, M. Kurtoglu, V. Preeser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater., 2011, 23, 4248-4253. [44] M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater., 2014, 26, 992-1005. [45] P. Eklund, J. Rosen, P. O. Å. Persson, J. Phys. D:Appl. Phys., 2017, 50, 113001. [46] X. F. Yu, Y. C. Li, J. B. Cheng, Z. B. Liu, Q. Z. Li, W. Z. Li, X. Yang, B. Xiao, ACS Appl. Mater. Interfaces, 2015, 7, 13707-13713. [47] S. J. Kim, H. J. Koh, C. E. Ren, O. Kwon, K. Maleski, S. Y. Cho, B. Anasori, C. K. Kim, Y. K. Choi, J. Kim, Y. Gogotsi, H. T. Jung, ACS Nano, 2018, 12, 986-993. [48] X. Zhang, J. Lei, D. Wu, X. Zhao, Y. Jing, Z. Zhou, J. Mater. Chem. A, 2016, 4, 4871-4876. [49] X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, J. Mater. Chem. A, 2017, 5, 12899-12903. [50] Q. Tang, Z. Zhou, P. Shen, J. Am. Chem. Soc., 2012, 134, 16909-16916. [51] M. Okubo, A. Sugahara, S. Kajiyama, A. Yamada, Acc. Chem. Res., 2018, 51, 591-599. [52] M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science, 2013, 341, 1502-1505. [53] H. Zhang, G. Yang, X. Zuo, H. Tang, Q. Yang, G. Li, J. Mater. Chem. A, 2016, 4, 12913-12920. [54] N. K. Chaudhari, H. Jin, B. Kim, D. San Baek, S. H. Joo, K. Lee, J. Mater. Chem. A, 2017, 5, 24564-24579. [55] Y. Gao, H. Zhuo, Y. Cao, X. Sun, G. Zhuang, S. Deng, X. Zhong, Z. Wei, J. Wang, Chin. J. Catal., 2019, 40, 152-159. [56] L. Yi, C. Wen, G. Yun, G. Lu, Y. Wang, J. Phys. Chem. C, 2010, 114, 9889-9897. [57] H. Wu, S. Ma, W. Song, E. J. M. Hensen, J. Phys. Chem. C, 2016, 120, 13071-13077. [58] B. Delley, J. Chem. Phys., 2000, 113, 7756-7764. [59] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868. [60] A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 2009, 102, 073005/1-073005/4. [61] B. Delley, Phys. Rev. B, 2002, 66, 155125/1-155125/9. [62] B. Delley, J. Chem. Phys., 1990, 92, 508-517. [63] S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys., 2001, 73, 515-562. [64] A. Deb, J. M. Ralph, E. J. Cairns, U. Bergmann, Phys. Rev. B, 2006, 73, 115114/1-115114/9. [65] W. Frey, J. Y. Lee, V. Jaeger, Z. Kristallogr. New Cryst. Struct., 2005, 220, 567-568. [66] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys.:Condens. Matter, 2002, 14, 2717-2744. [67] D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett., 1979, 43, 1494-1497. [68] T. A. Halgren, W. N. Lipscomb, Chem. Phys. Lett., 1977, 49, 225-232. [69] G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys., 2000, 113, 9901-9904. [70] Y. Zhao, J. Zhao, Appl. Surf. Sci., 2017, 412, 591-598. [71] S. Kozuch, S. Shaik, Acc. Chem. Res., 2011, 44, 101-110. [72] R. G. Parr, L. J. Bartolotti, J. Am. Chem. Soc., 1982, 104, 3801-3803. [73] C. Kittel, Introduction to solid state physics, Wiley New York, 1976. [74] H. P. Bonzel, R. Ku, J. Vac. Sci. Technol., 1972, 9, 663-667. [75] B. C. Sales, J. E. Turner, M. B. Maple, Surf. Sci., 1982, 114, 381-394. [76] J. W. Li, K. L. Pan, S. J. Yu, S. Y. Yan, M. B. Chang, J. Environ. Sci., 2014, 26, 2546-2553. [77] J. Pei, X. Han, Y. Lu, Build. Environ., 2015, 84, 134-141. [78] B. Bai, H. Arandiyan, J. Li, Appl. Catal. B, 2013, 142, 677-683. |
[1] | Ke Wang, Miao Cheng, Nan Wang, Qianyi Zhang, Yi Liu, Junwei Liang, Jie Guan, Maochang Liu, Jiancheng Zhou, Naixu Li. Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2023, 44(1): 146-159. |
[2] | Xue Bai, Jingqi Guan. MXenes for electrocatalysis applications: Modification and hybridization [J]. Chinese Journal of Catalysis, 2022, 43(8): 2057-2090. |
[3] | Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation [J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841. |
[4] | Xiu Qian, Yanjiao Wei, Mengjie Sun, Ye Han, Xiaoli Zhang, Jian Tian, Minhua Shao. Heterostructuring 2D TiO2 nanosheets in situ grown on Ti3C2Tx MXene to improve the electrocatalytic nitrogen reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1937-1944. |
[5] | Neng Li, Jiahe Peng, Zuhao Shi, Peng Zhang, Xin Li. Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction [J]. Chinese Journal of Catalysis, 2022, 43(7): 1906-1917. |
[6] | Yijing Gao, Shijie Zhang, Xiang Sun, Wei Zhao, Han Zhuo, Guilin Zhuang, Shibin Wang, Zihao Yao, Shengwei Deng, Xing Zhong, Zhongzhe Wei, Jian-guo Wang. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis [J]. Chinese Journal of Catalysis, 2022, 43(7): 1860-1869. |
[7] | Junxian Bai, Rongchen Shen, Zhimin Jiang, Peng Zhang, Youji Li, Xin Li. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 359-369. |
[8] | Huapeng Li, Bin Sun, Tingting Gao, Huan Li, Yongqiang Ren, Guowei Zhou. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production [J]. Chinese Journal of Catalysis, 2022, 43(2): 461-471. |
[9] | Yuhua Liu, Wei Zhang, Weitao Zheng. Surface chemistry of MXene quantum dots: Virus mechanism-inspired mini-lab for catalysis [J]. Chinese Journal of Catalysis, 2022, 43(11): 2913-2935. |
[10] | Lele Wang, Tao Yang, Lijie Peng, Qiqi Zhang, Xilin She, Hua Tang, Qinqin Liu. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2022, 43(10): 2720-2731. |
[11] | Chen Guan, Xiaoyang Yue, Jiajie Fan, Quanjun Xiang. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications [J]. Chinese Journal of Catalysis, 2022, 43(10): 2484-2499. |
[12] | Saisai Li, Jianrui Sun, Jingqi Guan. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2021, 42(4): 511-556. |
[13] | Jiale Qu, Jiewen Xiao, Hetian Chen, Xiaopeng Liu, Tianshuai Wang, Qianfan Zhang. Orbital symmetry matching: Achieving superior nitrogen reduction reaction over single-atom catalysts anchored on Mxene substrates [J]. Chinese Journal of Catalysis, 2021, 42(2): 288-296. |
[14] | Zhongjing Deng, Xingqun Zheng, Mingming Deng, Li Li, Li Jing, Zidong Wei. Catalytic activity of V2CO2 MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions: A density functional theory calculation study [J]. Chinese Journal of Catalysis, 2021, 42(10): 1659-1666. |
[15] | Kaining Li, Sushu Zhang, Yuhan Li, Jiajie Fan, Kangle Lv. MXenes as noble-metal-alternative co-catalysts in photocatalysis [J]. Chinese Journal of Catalysis, 2021, 42(1): 3-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||