Chinese Journal of Catalysis ›› 2020, Vol. 41 ›› Issue (9): 1337-1347.DOI: 10.1016/S1872-2067(20)63580-X
• Articles • Previous Articles Next Articles
Shunlin Li, Lili Wang, Mengmeng Wu, Yafei Sun, Xiaojuan Zhu, Ying Wan
Received:
2020-01-15
Revised:
2020-02-21
Online:
2020-09-18
Published:
2020-08-08
Supported by:
Shunlin Li, Lili Wang, Mengmeng Wu, Yafei Sun, Xiaojuan Zhu, Ying Wan. Measurable surface d charge of Pd as a descriptor for the selective hydrogenation activity of quinoline[J]. Chinese Journal of Catalysis, 2020, 41(9): 1337-1347.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63580-X
[1] L. T. Mik, E. Cséfalvay, Á. Németh, Chem. Rev., 2018, 118, 505-613. [2] A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J. K. Nörskov, J. Catal., 2015, 328, 36-42. [3] M. Che, Catal. Today, 2013, 218-219, 162-171. [4] S. J. Henley, J. D. Carey, S. R. P. Silva, Phys. Rev. B, 2005, 72, 195408. [5] D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, S. Mann, Nat. Mater., 2003, 2, 386-390. [6] D. R. Penn, Phys. Rev. Lett., 1979, 42, 921-925. [7] F. C. Zhang, T. M. Rice, Phys. Rev. B, 1988, 37, 3759-3761. [8] J. I. Musher, J. Am. Chem. Soc., 1972, 94, 1370-1371. [9] J. Kanamori, Prog. Theor. Phys., 1963, 30, 275-289. [10] W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem., 1996, 100, 12974-12980. [11] J. Greeley, J. K. Nörskov, M. Mavrikakis, Annu. Rev. Phys. Chem., 2002, 53, 319-348. [12] J. K. Nörskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem., 2009, 1, 37-46. [13] B. Hammer, J. K. Nörskov, Nature, 1995, 376, 238-240. [14] T. Bligaard, J. K. Nörskov, S. Dahl, J. Matthiesen, C. H. Christensen, J. Sehested, J. Catal., 2004, 224, 206-217. [15] J. K. Nörskov, T. Bligaard, B. Hvolbæk, F. Abild-Pedersen, I. Chorkendorff, C. H. Christensen, Chem. Soc. Rev., 2008, 37, 2163-2171. [16] M. P. Andersson, T. Bligaard, A. Kustov, K. E. Larsen, J. Greeley, T. Johannessen, C. H. Christensen, J. K. Nörskov, J. Catal., 2006, 239, 501-506. [17] T. Bligaard, J. K. Nörskov, In:Chemical Bonding at Surfaces and Interfaces, A. Nillson, L. G. M. Petterson, J. K. Norskov eds. Amsterdam, 2008, 255-321. [18] X. Zhu, Q. Guo, Y. Sun, S. Chen, J. Q. Wang, M. Wu, W. Fu, Y. Tang, X. Duan, D. Chen, Y. Wan, Nat. Commun., 2019, 10, 1428. [19] S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev., 2009, 109, 3612-3676. [20] D. Ren, L. He, L. Yu, R. S. Ding, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan, J. Am. Chem. Soc., 2012, 134, 17592-17598. [21] V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Chem. Rev., 2011, 111, 7157-7259. [22] H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman,A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. Fujita, D. H. G. Gibson, A. William, D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults, W. Tumas, Chem. Rev., 2001, 101, 953-996. [23] J. R. Kitchin, J. K. Nörskov, M. A. Barteau, J. G. Chen, J. Chem. Phys., 2004, 120, 10240-10246. [24] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem., 2010, 2, 454-460. [25] M. Guo, C. Li, Q. Yang, Catal. Sci. Technol., 2017, 7, 2221-2227. [26] S. Venkatachalam, T. Jacob, Phys. Chem. Chem. Phys., 2009, 11, 3263-3270. [27] K. Li, B. Hao, M. Xiao, Y. Kuang, H. Shang, J. Ma, Y. Liao, H. Mao, Appl. Surf. Sci., 2019, 478, 176-182. [28] J. M. Richardson, C. W. Jones, J. Catal., 2007, 251, 80-93. [29] S. Chen, L. Meng, B. Chen, W. Chen, X. Duan, X. Huang, B. Zhang, H. Fu, Y. Wan, ACS Catal., 2017, 7, 2074-2087. [30] L. Duan, R. Fu, B. Zhang, W. Shi, S. Chen, Y. Wan, ACS Catal., 2016, 6, 1062-1074. [31] R. J. Madon, M. Boudart, Ind. Eng. Chem. Fun., 1982, 21, 438-447. [32] Y. Gong, P. Zhang, X. Xu, Y. Li, H. Li, Y. Wang, J. Catal., 2013, 297, 272-280. [33] H. Wise, J. Catal., 1968, 10, 69-72. [34] H. F. Cordes, J. Phys. Chem., 1968, 72, 2185-2189. [35] W. M. H. Sachtler, R. Jongepier, J. Catal., 1965, 4, 665-671. [36] G. J. Hutchings, C. J. Kiely, Acc. Chem. Res., 2013, 46, 1759-1772. [37] S. Marx, A. Baiker, J. Phys. Chem. C., 2009, 113, 6191-6201. [38] A. Venezia, Appl. Catal. A, 2003, 251, 359-368. [39] A. M. Venezia, V. La Parola, V. Nicol??, G. Deganello, J. Catal., 2002, 212, 56-62. [40] J. Pritchard, L. Kesavan, M. Piccinini, Q. He, R. Tiruvalam, N. Dimitratos, J. A. Lopez-Sanchez, A. F. Carley, J. K. Edwards, C. J. Kiely, G. J. Hutchings, Langmuir, 2010, 26, 16568-16577. [41] L. Duan, R. Fu, Z. Xiao, Q. Zhao, J. Q. Wang, S. Chen, Y. Wan, ACS Catal., 2015, 5, 575-586. [42] J. C. Vedrine, M. Dufaux, C. Naccache, B. Imelik, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 440-449. [43] P. A. P. Nascente, S. G. C. de Castro, R. Landers, G. G. Kleiman, Phys. Rev. B, 1991, 43, 4659-4666. [44] N. Mårtensson, R. Nyholm, H. Calén, J. Hedman, B. Johansson, Phys. Rev. B, 1981, 24, 1725-1738. [45] M. B. Griffin, A. A. Rodriguez, M. M. Montermore, J. R. Monnier, C. T. Williams, J. W. Medlin, J. Catal., 2013, 307, 111-120. [46] A. F. Lee, C. J. Baddeley, C. Hardacre, R. M. Ormerod, R. M. Lambert, G. Schmid, H. West, J. Phys. Chem., 1995, 99, 6096-6102. [47] M. R. Knecht, M. G. Weir, A. I. Frenkel, R. M. Crooks, Chem. Mater., 2008, 20, 1019-1028. [48] P. Dash, T. Bond, C. Fowler, W. Hou, N. Coombs, R. W. J. Scott, J. Phys. Chem. C, 2009, 113, 12719-12730. [49] A. Christensen, A. V. Ruban, P. Stoltze, K. W. Jacobsen, H. L. Skriver, J. K. Nörskov, F. Besenbacher, Phys. Rev. B, 1997, 56, 5822-5834. [50] R. Marchal, A. Genest, S. Krüger, N. Rösch, J. Phys. Chem. C, 2013, 117, 21810-21822. [51] S. Wang, J. Wang, Q. Zhao, D. Li, J. Q. Wang, M. Cho, H. Cho, O. Terasaki, S. Chen, Y. Wan, ACS Catal., 2015, 5, 797-802. [52] S. N. Reifsnyder, H. H. Lamb, J. Phys. Chem. B, 1999, 103, 321-329. [53] F. Liu, D. Wechsler, P. Zhang, Chem. Phys. Lett., 2008, 461, 254-259. [54] M. Ø. Pedersen, S. Helveg, A. Ruban, I. Stensgaard, E. Lægsgaard, J. K. Nörskov, F. Besenbacher, Surf. Sci., 1999, 426, 395-409. [55] R. J. Davis, S. M. Landry, J. A. Horsley, M. Boudart, Phys. Rev. B, 1989, 39, 10580-10583. [56] J. Goetz, M. A. Volpe, A. M. Sica, C. E. Gigola, R. Touroude, J. Catal., 1995, 153, 86-93. [57] H. Xin, A. Vojvodic, J. Voss, J. K. Nörskov, F. Abild-Pedersen, Phys. Rev. B, 2014, 89, 115114. [58] J. A. McCaulley, Phys. Rev. B., 1993, 47, 4873-4879. [59] W. Jones, R. Su, P. P. Wells, Y. Shen, N. Dimitratos, M. Bowker, D. Morgan, B. B. Iversen, A. Chutia, F. Besenbacher, G. Hutchings, Phys. Chem. Chem. Phys., 2014, 16, 26638-44. [60] J. E. Muller, O. Jepsen, O. K. Andersen, J. W. Wilkins, Phys. Rev. Lett., 1978, 40, 720-722. [61] W. Olovsson, C. Göransson, L. V. Pourovskii, B. Johansson, I. A. Abrikosov, Phys. Rev. B, 2005, 72, 064203. [62] E. G. Allison, G. C. Bond, Catal. Rev., 1972, 7, 233-289. [63] E. J. Cho, S. Lee, S. J. Oh, M. Han, Y. S. Lee, C. N. Whang, Phys. Rev. B, 1995, 52, 16443-16450. [64] E. Choi, S. J. Oh, M. Choi, Phys. Rev. B, 1991, 43, 6360-6368. [65] N. J. Castellani, D. B. Leroy, Z. Phys. B, 1988, 71, 315-319. [66] W. Tu, Y. H. Chin, Angew. Chem. Int. Ed., 2014, 53, 12148-12152. [67] W. Tu, M. Ghoussoub, C. V. Singh, Y.-H. C. Chin, J. Am. Chem. Soc., 2017, 139, 6928-6945. [68] W. Chen, D. Li, C. Peng, G. Qian, X. Duan, D. Chen, X. Zhou, J. Catal., 2017, 356, 186-196. [69] B. Hammer, J. K. Nörskov, Adv. Catal., 2000, 45, 71-129. [70] G. Santarossa, M. Lannuzzi, A. Vargas, A. Baiker, ChemPhysChem, 2008, 9, 401-413. [71] T. Rowland, N. E. Cusack, R. G. Ross, J. Phys. F:Met. Phys., 1974, 4, 2189-2202. [72] H. Falsig, B. Hvolbaek, I. S. Kristensen, T. Jiang, T. Bligaard, C. H. Christensen, J. K. Nörskov, Angew. Chem. Int. Ed., 2008, 47, 4835-4839. [73] N. Lopez, J. K. Nörskov, J. Am. Chem. Soc., 2002, 124, 11262-11263. |
[1] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[2] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[3] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[4] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[5] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[6] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[7] | Yanan Xing, Leilei Kang, Jingyuan Ma, Qike Jiang, Yang Su, Shengxin Zhang, Xiaoyan Xu, Lin Li, Aiqin Wang, Zhi-Pan Liu, Sicong Ma, Xiao Yan Liu, Tao Zhang. Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 48(5): 164-174. |
[8] | Fengwei Zhang, Hefang Guo, Mengmeng Liu, Yang Zhao, Feng Hong, Jingjing Li, Zhengping Dong, Botao Qiao. Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst [J]. Chinese Journal of Catalysis, 2023, 48(5): 195-204. |
[9] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[10] | Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation [J]. Chinese Journal of Catalysis, 2023, 46(3): 125-136. |
[11] | Yue Liu, Wei Zhang, Haichao Liu. Unraveling the active states of WO3-based catalysts in the selective conversion of cellulose to glycols [J]. Chinese Journal of Catalysis, 2023, 46(3): 56-63. |
[12] | Haifeng Wang, Fan Wang, Xiaopeng Li, Qi Xiao, Wei Luo, Jingsan Xu. In-situ formation of electron-deficient Pd sites on AuPd alloy nanoparticles under irradiation enabled efficient photocatalytic Heck reaction [J]. Chinese Journal of Catalysis, 2023, 46(3): 72-83. |
[13] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
[14] | Feng Sha, Shan Tang, Chizhou Tang, Zhendong Feng, Jijie Wang, Can Li. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol [J]. Chinese Journal of Catalysis, 2023, 45(2): 162-173. |
[15] | Longkang Zhang, Yue Ma, Changcheng Liu, Zhipeng Wan, Chengwei Zhai, Xin Wang, Hao Xu, Yejun Guan, Peng Wu. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 55(12): 241-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||