Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (8): 1269-1286.DOI: 10.1016/S1872-2067(20)63619-1
• Reviews • Previous Articles Next Articles
Yao Wanga,b, Xun Huangb,*(), Zidong Weib
Received:
2020-09-23
Accepted:
2020-10-24
Online:
2021-08-18
Published:
2020-12-10
Contact:
Xun Huang
About author:
*. Tel/Fax: +86-23-65678931; E-mail:huangxun@cqu.edu.cnSupported by:
Yao Wang, Xun Huang, Zidong Wei. Recent developments in the use of single-atom catalysts for water splitting[J]. Chinese Journal of Catalysis, 2021, 42(8): 1269-1286.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63619-1
Fig. 1. Activity trends towards hydrogen evolution (a) and oxygen evolution (b). Panel (a) reprinted with permission from ref. [64] Copyright 2015, The Royal Society of Chemistry. Panel (b) reprinted with permission from Ref. [67] Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reaction | Catalyst | Electrolyte | Overpotential | Re啊啊啊f. |
---|---|---|---|---|
HER | Ir1@Co/NC | 1 M KOH | 0.060 V @10 mA cm-2 | [ |
Ru-NC-700 | 1 M KOH | 0.012 V @10 mA cm-2 | [ | |
A-Ni@DG | 0.5 M H2SO4 | 0.070 V @10 mA cm-2 | [ | |
Pt1/MC | 0.5 M H2SO4 | 0.065 V @100 mA cm-2 | [ | |
W-SAC | 0.5 M H2SO4 | 0.105 V @10 mA cm-2 | [ | |
Pt-1T’MoS2 | 0.5 M H2SO4 | 0.180 V @10 mA cm-2 | [ | |
A-CoPt-NC | 0.5 M H2SO4 | 0.027 V @10 mA cm-2 | [ | |
1 M KOH | 0.050 V @10 mA cm-2 | |||
Pt/np-Co0.85Se | 1 M phosphate buffer solutions (PBS) | 0.050 V @10 mA cm-2 | [ | |
Mo2TiC2Tx-PtSA | 0.5 M H2SO4 | 0.077 V @100 mA cm-2 | [ | |
0.5 M PBS | 0.061 V @10 mA cm-2 | |||
Pt/p-MWCNTs | 0.5 M H2SO4 | 0.044 V @10 mA cm-2 | [ | |
NiSA-MoS2 | 1 M KOH | 0.098 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.110 V @10 mA cm-2 | |||
Ru@Co-SAs/N-C | 1 M KOH | 0.007 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.057 V @10 mA cm-2 | |||
1 M PBS | 0.055 V @10 mA cm-2 | |||
ALD50Pt/NGNs | 0.5 M H2SO4 | 0.050 V @16 mA cm-2 | [ | |
Ni/GD | 0.5 M H2SO4 | 0.088 V @10 mA cm-2 | [ | |
Fe/GD | 0.5 M H2SO4 | 0.066 V @10 mA cm-2 | ||
Pt1/hNCNC-2.92 | 0.5 M H2SO4 | 0.015 V @10 mA cm-2 | [ | |
Co1/PCN | 1 M KOH | 0.138 V @10 mA cm-2 | [ | |
SANi-PtNWs | 1 M KOH | 0.070 V @11mA cm-2 | [ | |
Co-substituted Ru | 1 M KOH | 0.013 V @11mA cm-2 | [ | |
Pt1/OLC | 0.5 M H2SO4 | 0.038 V @11mA cm-2 | [ | |
RuAu-0,2 | 1 M KOH | 0.024 V @11mA cm-2 | [ | |
Fe-N4 SAs/NPC | 1 M KOH | 0.202 V @10 mA cm-2 | [ | |
PtSA-NT-NF | 1 M PBS | 0.024 V @10 mA cm-2 | [ | |
Ru SAs@PN | 0.5 M H2SO4 | 0.024 V @10 mA cm-2 | [ | |
Cu@MoS2 | 0.5 M H2SO4 | 0.131 V @10 mA cm-2 | [ | |
Ru-MoS2/CC | 1 M KOH | 0.041 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.061 V @10 mA cm-2 | |||
1 M PBS | 0.114 V @10 mA cm-2 | |||
Pt SASs/AG | 0.5 M H2SO4 | 0.012 V @10 mA cm-2 | [ | |
CoSAs/PTF-600 | 0.5 M H2SO4 | 0.094 V @10 mA cm-2 | [ | |
SACo-N/C | 1 M KOH | 0.178 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.169 V @10 mA cm-2 | |||
RuSA-N-S-Ti3C2Tx | 0.5 M H2SO4 | 0.151 V @10 mA cm-2 | [ | |
Mo1N1C2 | 0.1 M KOH | 0.132 V @10 mA cm-2 | [ | |
OER | Ir1@Co/NC | 1 M KOH | 0.260 V @10 mA cm-2 | [ |
Ru-N-C | 0.5 M H2SO4 | 0.267 V @10 mA cm-2 | [ | |
CoIr-0.2 | 1 M PBS | 0.373 V @10 mA cm-2 | [ | |
A-Ni@DG | 1 M KOH | 0.270 V @10 mA cm-2 | [ | |
P-O/FeN4-CNS | 0.1 M KOH | 0.390 V @10 mA cm-2 | [ | |
Fe-N4 SAs/NPC | 1 M KOH | 0.440 V @10 mA cm-2 | [ | |
Au@Ni2P-350°C | 1 M KOH | 0.240 V @10 mA cm-2 | [ | |
Co-C3N4@CS | 1 M KOH | 0.470 V @50 mA cm-2 | [ | |
Co-Fe-N-C. | 1 M KOH | 0.309 V @10 mA cm-2 | [ | |
Co-C3N4/CNT | 1 M KOH | 0.380 V @10 mA cm-2 | [ | |
CoNi-SAs/NC | 1 M KOH | 0.340 V @10 mA cm-2 | [ | |
Au1Nx | 0.1 M KOH | 0.450 V @10 mA cm-2 | [ | |
w-Ni(OH)2 | 1 M KOH | 0.273 V @10 mA cm-2 | [ | |
Ni-NHGF | 1 M KOH | 0.331 V @10 mA cm-2 | [ | |
Ru1-Pt3Cu | 0.1 M HClO4 | 0.220 V @10 mA cm-2 | [ | |
Ru/CoFe-LDH | 1 M KOH | 0.198 V @10 mA cm-2 | [ | |
0.5 wt% Pt/NiO | 1 M KOH | 0.358 V @10 mA cm-2 | [ | |
Ir@Co | 1 M KOH | 0.273 V @10 mA cm-2 | [ | |
HCM@Ni-N. | 1 M KOH | 0.304 V @10 mA cm-2 | [ | |
SCoNC | 0.1 M KOH | 0.310 V @10 mA cm-2 | [ | |
Co-Nx/C NRA | 0.1 M KOH | 0.300 V @10 mA cm-2 | [ |
Table 1 Recent progress in SACs for electrochemical water splitting.
Reaction | Catalyst | Electrolyte | Overpotential | Re啊啊啊f. |
---|---|---|---|---|
HER | Ir1@Co/NC | 1 M KOH | 0.060 V @10 mA cm-2 | [ |
Ru-NC-700 | 1 M KOH | 0.012 V @10 mA cm-2 | [ | |
A-Ni@DG | 0.5 M H2SO4 | 0.070 V @10 mA cm-2 | [ | |
Pt1/MC | 0.5 M H2SO4 | 0.065 V @100 mA cm-2 | [ | |
W-SAC | 0.5 M H2SO4 | 0.105 V @10 mA cm-2 | [ | |
Pt-1T’MoS2 | 0.5 M H2SO4 | 0.180 V @10 mA cm-2 | [ | |
A-CoPt-NC | 0.5 M H2SO4 | 0.027 V @10 mA cm-2 | [ | |
1 M KOH | 0.050 V @10 mA cm-2 | |||
Pt/np-Co0.85Se | 1 M phosphate buffer solutions (PBS) | 0.050 V @10 mA cm-2 | [ | |
Mo2TiC2Tx-PtSA | 0.5 M H2SO4 | 0.077 V @100 mA cm-2 | [ | |
0.5 M PBS | 0.061 V @10 mA cm-2 | |||
Pt/p-MWCNTs | 0.5 M H2SO4 | 0.044 V @10 mA cm-2 | [ | |
NiSA-MoS2 | 1 M KOH | 0.098 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.110 V @10 mA cm-2 | |||
Ru@Co-SAs/N-C | 1 M KOH | 0.007 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.057 V @10 mA cm-2 | |||
1 M PBS | 0.055 V @10 mA cm-2 | |||
ALD50Pt/NGNs | 0.5 M H2SO4 | 0.050 V @16 mA cm-2 | [ | |
Ni/GD | 0.5 M H2SO4 | 0.088 V @10 mA cm-2 | [ | |
Fe/GD | 0.5 M H2SO4 | 0.066 V @10 mA cm-2 | ||
Pt1/hNCNC-2.92 | 0.5 M H2SO4 | 0.015 V @10 mA cm-2 | [ | |
Co1/PCN | 1 M KOH | 0.138 V @10 mA cm-2 | [ | |
SANi-PtNWs | 1 M KOH | 0.070 V @11mA cm-2 | [ | |
Co-substituted Ru | 1 M KOH | 0.013 V @11mA cm-2 | [ | |
Pt1/OLC | 0.5 M H2SO4 | 0.038 V @11mA cm-2 | [ | |
RuAu-0,2 | 1 M KOH | 0.024 V @11mA cm-2 | [ | |
Fe-N4 SAs/NPC | 1 M KOH | 0.202 V @10 mA cm-2 | [ | |
PtSA-NT-NF | 1 M PBS | 0.024 V @10 mA cm-2 | [ | |
Ru SAs@PN | 0.5 M H2SO4 | 0.024 V @10 mA cm-2 | [ | |
Cu@MoS2 | 0.5 M H2SO4 | 0.131 V @10 mA cm-2 | [ | |
Ru-MoS2/CC | 1 M KOH | 0.041 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.061 V @10 mA cm-2 | |||
1 M PBS | 0.114 V @10 mA cm-2 | |||
Pt SASs/AG | 0.5 M H2SO4 | 0.012 V @10 mA cm-2 | [ | |
CoSAs/PTF-600 | 0.5 M H2SO4 | 0.094 V @10 mA cm-2 | [ | |
SACo-N/C | 1 M KOH | 0.178 V @10 mA cm-2 | [ | |
0.5 M H2SO4 | 0.169 V @10 mA cm-2 | |||
RuSA-N-S-Ti3C2Tx | 0.5 M H2SO4 | 0.151 V @10 mA cm-2 | [ | |
Mo1N1C2 | 0.1 M KOH | 0.132 V @10 mA cm-2 | [ | |
OER | Ir1@Co/NC | 1 M KOH | 0.260 V @10 mA cm-2 | [ |
Ru-N-C | 0.5 M H2SO4 | 0.267 V @10 mA cm-2 | [ | |
CoIr-0.2 | 1 M PBS | 0.373 V @10 mA cm-2 | [ | |
A-Ni@DG | 1 M KOH | 0.270 V @10 mA cm-2 | [ | |
P-O/FeN4-CNS | 0.1 M KOH | 0.390 V @10 mA cm-2 | [ | |
Fe-N4 SAs/NPC | 1 M KOH | 0.440 V @10 mA cm-2 | [ | |
Au@Ni2P-350°C | 1 M KOH | 0.240 V @10 mA cm-2 | [ | |
Co-C3N4@CS | 1 M KOH | 0.470 V @50 mA cm-2 | [ | |
Co-Fe-N-C. | 1 M KOH | 0.309 V @10 mA cm-2 | [ | |
Co-C3N4/CNT | 1 M KOH | 0.380 V @10 mA cm-2 | [ | |
CoNi-SAs/NC | 1 M KOH | 0.340 V @10 mA cm-2 | [ | |
Au1Nx | 0.1 M KOH | 0.450 V @10 mA cm-2 | [ | |
w-Ni(OH)2 | 1 M KOH | 0.273 V @10 mA cm-2 | [ | |
Ni-NHGF | 1 M KOH | 0.331 V @10 mA cm-2 | [ | |
Ru1-Pt3Cu | 0.1 M HClO4 | 0.220 V @10 mA cm-2 | [ | |
Ru/CoFe-LDH | 1 M KOH | 0.198 V @10 mA cm-2 | [ | |
0.5 wt% Pt/NiO | 1 M KOH | 0.358 V @10 mA cm-2 | [ | |
Ir@Co | 1 M KOH | 0.273 V @10 mA cm-2 | [ | |
HCM@Ni-N. | 1 M KOH | 0.304 V @10 mA cm-2 | [ | |
SCoNC | 0.1 M KOH | 0.310 V @10 mA cm-2 | [ | |
Co-Nx/C NRA | 0.1 M KOH | 0.300 V @10 mA cm-2 | [ |
Fig. 2. (a) The synthetic procedure, the EXAFS spectra of the Co K-edge and OER performance of cobalt-based SACs by using KCl particles as the growth seeds; reprinted with permission from Ref. [108] Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) The synthetic procedure, the EXAFS spectra of the Co K-edge and OER performance of SACs electrode without any binders; reprinted with permission from Ref. [139] Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) The synthetic procedure, HAADF-STEM image and HER performance of cobalt based SACs prepared by Co2+-SCN- compound and C3N4 precursors; reprinted with permission from Ref. 92 Copyright 2019, Science China Press. Published by Elsevier B.V. and Science China Press. (d) The HER performance of single platinum atoms supported on single-wall carbon nanotubes and the adsorption of Pt onto (14,0) SWNT and graphene. Reprinted with permission from Ref. [151] Copyright 2017, American Chemical Society.
Fig. 3. (a) HAADF signal analysis, EXAFS spectra of the Pt K-edge O and mass activity for 0.5 wt% Pt/Ni, and simulated OER element steps proceeded at the Pt-doped γ-NiOOH and the corresponding energy profiles of the OER at 1.23 V. Reprinted with permission from Ref. [105] Copyright 2018, The Royal Society of Chemistry. (b) HAADF-STEM and OER performance for single gold atoms-doped NiFe(OH)2, and simulated OER element steps and the corresponding energy profiles on the surface of single gold atoms-doped NiFe(OH)2. Reprinted with permission from Ref. [161] Copyright 2018, American Chemical Society. (c) The OER performance of single tungsten atoms-doped Ni(OH)2 nanosheets, and simulated OER element steps and the corresponding energy profiles for single tungsten atoms-doped Ni(OH)2 nanosheets and Ni(OH)2 nanosheets. Reprinted with permission from Ref. [101] Copyright 2019, Springer Nature. (d) The charge density difference on the Ni/Cr2CO2 surface and the schematic of the single metal atoms anchored on Cr2CO2 surface for overall water splitting. Reprinted with permission from Ref. [165] Copyright 2019, American Chemical Society.
Fig. 4. (a) The volcano curve of exchange current as a function of the Gibbs free energy for hydrogen binding on different active sites on the GDY monolayer. (b) Activity trends toward OER, the negative maximum potential-determining step was plotted against the (ΔGO* - ΔGOH*) step; reproduced with permission from Ref. [173] Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (c) The relation between currents (log(i0)) and ΔGH* indicates a volcano curve. Reprinted with permission from Ref. [175] Copyright 2015, The Royal Society of Chemistry. (d) Downshift of the conduction band (CB) upon addition of a single Co and Ni metal atom at the Mo atop site, respectively. Reprinted with permission from Ref. [176] Copyright 2018, The Royal Society of Chemistry.
Fig. 5. The HER volcano curve (a) and OER volcano plot (b) for various low-coordinated transition metals/graphene composite. Reprinted with permission from Ref. [187] Copyright 2017, The Royal Society of Chemistry. (c) Gibbs free energy diagram of HER and DFT optimized geometry of Pt-S4 complexes in the presence of water (black) and CO (red). Reprinted with permission from Ref. [189] Copyright 2018, American Chemical Society. (d) OER performance of Co-Fe double-atom catalyst; Inset: proposed model for the formation of Co-Fe double-atom catalyst. Reprinted with permission from Ref. [97] Copyright 2019, American Chemical Society.
Fig. 6. SEM (a) and HAADF-STEM (b) images of SS-Co-SAC NSAs. Reprinted with permission from Ref. [203] Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) TEM image and the corresponding EDS maps of Mo-SAC. (d) HAADF-STEM images of Mo-SAC. Reprinted with permission from Ref. [94] Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) FESEM and ADF-STEM image of HCM@Ni-N. (f) HAADF-STEM image of HCM@Ni-N. Reprinted with permission from Ref. [107] Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 7. (a) The cascade anchoring strategy for the synthesis of M-NC SACs. Reprinted with permission from Ref. [48] Copyright 2019, Springer Nature. (b) Six typical configurations of [PtCl6]2- on different supports with different nitrogen atoms in micropores and corresponding calculated free energies. Reprinted with permission from Ref. [79] Copyright 2019, Springer Nature. (c) Schematic illustration of the iced-photochemical process and HER performance of the corresponding prepared SACs (scale bar, 2 nm). Reprinted with permission from Ref. [52] Copyright 2017, Springer Nature.
[1] |
Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao , Chem. Soc. Rev., 2015,44, 2060-2086.
DOI URL PMID |
[2] |
L. S. Peng, S. S. A. Shah, Z. D. Wei , Chin. J. Catal., 2018,39, 1575-1593.
DOI URL |
[3] |
R. Xiang, L. Peng, Z. Wei , Chem. Eur. J., 2019,25, 9799-9815.
DOI URL PMID |
[4] |
J. W. Li, Q. N. Zhuang, P. M. Xu, D. W. Zhang, L. C. Wei, D. S. Yuan , Chin. J. Catal., 2018,39, 1403-1410.
DOI URL |
[5] |
Z. Li, Y. Qi, W. Y. Wang, D. Li, Z. Li, Y.A. Xiao, G.Y. Han, J. R. Shen, C. Li , Chin. J. Catal., 2019,40, 486-494.
DOI URL |
[6] |
D. Ji, L. Peng, J. Shen, M. Deng, Z. Mao, L. Tan, M. Wang, R. Xiang, J. Wang, S. S. A. Shah , Chem. Commun., 2019,55, 3290-3293.
DOI URL |
[7] |
L. Peng, X. Zheng, L. Li, L. Zhang, N. Yang, K. Xiong, H. Chen, J. Li, Z. Wei , Appl. Catal. B, 2019,245, 122-129.
DOI URL |
[8] |
L. Peng, J. Wang, Y. Nie, K. Xiong, Y. Wang, L. Zhang, K. Chen, W. Ding, L. Li, Z. Wei , ACS Catal., 2017,7, 8184-8191.
DOI URL |
[9] |
X. Zheng, L. Peng, L. Li, N. Yang, Y. Yang, J. Li, J. Wang, Z. Wei , Chem. Sci., 2018,9, 1822-1830.
DOI URL PMID |
[10] |
K. Xiong, L. Huang, Y. Gao, H. Zhang, Y. Zhuo, H. Shen, Y. Wang, L. Peng, Z. Wei , Electrochem. Commun., 2018,92, 9-13.
DOI URL |
[11] |
L. Peng, J. Shen, X. Zheng, R. Xiang, M. Deng, Z. Mao, Z. Feng, L. Zhang, L. Li, Z. Wei , J. Catal., 2019,369, 345-351.
DOI URL |
[12] |
L. Lu, L. Peng, L. Li, J. Li, X. Huang, Z. Wei , J. Energy Chem., 2020,40, 52-56.
DOI URL |
[13] |
P. F. Cheng, T. Feng, Z. W. Liu, D. Y. Wu, J. Yang , Chin. J. Catal., 2019,40, 1147-1152.
DOI URL |
[14] |
X. P. Liu, S. F. Deng, P. F. Liu, J. N. Liang, M. X. Gong, C. L. Lai, Y. Lu, T. H. Zhao, D. L. Wang , Sci. Bull., 2019,64, 1675-1684.
DOI URL |
[15] |
R. Xiang, Y. Duan, L. Peng, Y. Wang, C. Tong, L. Zhang, Z. Wei , Appl. Catal. B, 2019,246, 41-49.
DOI URL |
[16] |
R. Xiang, Y. Duan, C. Tong, L. Peng, J. Wang, S.S.A. Shah, T. Najam, X. Huang, Z. Wei , Electrochim. Acta, 2019,302, 45-55.
DOI URL |
[17] |
R. Xiang, C. Tong, Y. Wang, L. Peng, Y. Nie, L. Li, X. Huang, Z. Wei , Chin. J. Catal., 2018,39, 1736-1745.
DOI URL |
[18] | Y. Wang, W. Ding, S. Chen, Y. Nie, K. Xiong, Z. Wei , Chem. Commun.s, 2014,50, 15529-15532. |
[19] |
M. Ming, Y. Zhang, C. He, L. Zhao, S. Niu, G. Fan, J. S. Hu , Small, 2019,15, e1903057.
DOI URL PMID |
[20] |
Q. Wang, M. Ming, N. Shuai, Z. Yun, G. Fan, J. Hu , Adv. Energy Mater., 2018,8, 1801698.
DOI URL |
[21] |
J. Wang, Z. Li, Y. Wu, Y. Li , Adv. Mater., 2018,30, e1801649.
DOI URL PMID |
[22] |
Y. Cheng, S. He, S. Lu, J. P. Veder, B. Johannessen, L. Thomsen, M. Saunders, T. Becker, R. De Marco, Q. Li, S. Z. Yang, S. P. Jiang , Adv. Sci., 2019,6, 1802066.
DOI URL |
[23] |
W. Chen, Y. Ma, F. Li, L. Pan, W. Gao, Q. Xiang, W. Shang, C. Song, P. Tao, H. Zhu, X. Pan, T. Deng, J. Wu , Adv. Funct. Mater., 2019,29, 1904278.
DOI URL |
[24] |
J. Li, L. Zhong, L. Tong, Y. Yu, Q. Liu, S. Zhang, C. Yin, L. Qiao, S. Li, R. Si, J. Zhang , Adv. Funct. Mater., 2019,29, 1905423.
DOI URL |
[25] |
J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li, M. Ruan, P. Song, G. Sun, L. Jiang, Y. Wang, Z. Jiang, L. Gu, Z. Zhou, W. Xu , Angew. Chem. Int. Ed., 2019,58, 1163-1167.
DOI URL |
[26] |
J. Yang, Z. Qiu, C. Zhao, W. Wei, W. Chen, Z. Li, Y. Qu, J. Dong, J. Luo, Z. Li, Y. Wu , Angew. Chem. Int. Ed., 2018,57, 14095-14100.
DOI URL |
[27] |
Y. Tang, C. Asokan, M. Xu, G. W. Graham, X. Pan, P. Christopher, J. Li, P. Sautet , Nat. Commun., 2019,10, 4488.
DOI URL PMID |
[28] |
B. H. Lee, S. Park, M. Kim, A. K. Sinha, S. C. Lee, E. Jung, W. J. Chang, K. S. Lee, J. H. Kim, S. P. Cho, H. Kim, K. T. Nam, T. Hyeon , Nat. Mater., 2019,18, 620-626.
DOI URL PMID |
[29] |
Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li , Nat. Catal., 2018,1, 781-786.
DOI URL |
[30] |
Z. Zhang, X. Gao, M. Dou, J. Ji, F. Wang , Small, 2017,13, 1604290.
DOI URL |
[31] |
G. Righi, R. Magri, A. Selloni , J. Phys. Chem. C, 2019,123, 9875-9883.
DOI URL |
[32] |
Y. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan, Y.-W. Zhang , ACS Catal., 2018,8, 6203-6215.
DOI URL |
[33] |
X. J. Cui, X. C. Dai, A. E. Surkus, K. Junge, C. Kreyenschulte, G. Agostini, N. Rockstroh, M. Beller , Chin. J. Catal., 2019,40, 1679-1685.
DOI URL |
[34] |
K. Xiong, L. Li, L. Zhang, W. Ding, L. Peng, Y. Wang, S. Chen, S. Tan, Z. Wei , J. Mater. Chem. A, 2015,3, 1863-1867.
DOI URL |
[35] |
X. Sun, M. Liu, Y. Huang, B. Li, Z. Zhao , Chin. J. Catal., 2019,40, 819-825.
DOI URL |
[36] | J. N. Tiwari, A. M. Harzandi, M. Ha, S. Sultan, C. W. Myung, H. J. Park, D. Y. Kim, P. Thangavel, A. N. Singh, P. Sharma, S. S. Chandrasekaran, F. Salehnia, J. W. Jang, H. S. Shin, Z. Lee, K. S. Kim , Adv. Energy Mater., 2019,9, 1900931. |
[37] |
W. H. Lai, L. F. Zhang, W. B. Hua, S. Indris, Z. C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y. X. Wang, J. Z. Wang, Z. Hu, H. K. Liu, S. L. Chou, S. X. Dou , Angew. Chem. Int. Ed., 2019,58, 11868-11873.
DOI URL |
[38] |
Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai, Y. Zhou , Angew. Chem. Int. Ed., 2019,58, 10198-10203.
DOI URL |
[39] |
J. Xing, J. F. Chen, Y. H. Li, W. T. Yuan, Y. Zhou, L. R. Zheng, H. F. Wang, P. Hu, Y. Wang, H. J. Zhao, Y. Wang, H. G. Yang , Chem. Eur. J, 2014,20, 2138-2144.
DOI URL PMID |
[40] |
L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang, T. Yao , Nat. Commun., 2019,10, 4849.
DOI URL PMID |
[41] |
B. Lu, L. Guo, F. Wu, Y. Peng, J. E. Lu, T. J. Smart, N. Wang, Y. Z. Finfrock, D. Morris, P. Zhang, N. Li, P. Gao, Y. Ping, S. Chen , Nat. Commun., 2019,10, 631.
DOI URL PMID |
[42] |
Y. Zhang, C. Wu, H. Jiang, Y. Lin, H. Liu, Q. He, S. Chen, T. Duan, L. Song , Adv. Mater., 2018,30, e1707522.
DOI URL PMID |
[43] |
Z. Wang, S.-M. Xu, Y. Xu, L. Tan, X. Wang, Y. Zhao, H. Duan, Y.-F. Song , Chem. Sci., 2019,10, 378-384.
DOI URL PMID |
[44] |
C. Zhu, Q. Shi, B. Z. Xu, S. Fu, G. Wan, C. Yang, S. Yao, J. Song, H. Zhou, D. Du, S. P. Beckman, D. Su, Y. Lin , Adv. Energy Mater., 2018,8, 1801956.
DOI URL |
[45] |
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie , Angew. Chem. Int. Ed., 2017,56, 610-614.
DOI URL |
[46] |
Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, S.-Z. Qiao , Angew. Chem. Int. Ed., 2019,58, 12252-12257.
DOI URL |
[47] |
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W. C. Cheong, R. Shen, X. Wen, L. Zheng, A. I. Rykov, S. Cai, H. Tang, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li , Nat. Commun., 2018,9, 5422.
DOI URL PMID |
[48] |
L. Zhao, Y. Zhang, L. B. Huang, X. Z. Liu, Q. H. Zhang, C. He, Z. Y. Wu, L. J. Zhang, J. Wu, W. Yang, L. Gu, J. S. Hu, L. J. Wan , Nat. Commun., 2019,10, 1278.
DOI URL PMID |
[49] |
L. Zhang, Y. Jia, G. Gao, X. Yan, N. Chen, J. Chen, M. T. Soo, B. Wood, D. Yang, A. Du, X. Yao , Chem, 2018,4, 285-297.
DOI URL |
[50] |
J. Tian, D. Yang, J. Wen, A. S. Filatov, Y. Liu, A. Lei, X. M. Lin , Nanoscale, 2018,10, 1047-1055.
DOI URL PMID |
[51] |
M. D. Hossain, Z. Liu, M. Zhuang, X. Yan, G.-L. Xu, C. A. Gadre, A. Tyagi, I. H. Abidi, C.-J. Sun, H. Wong, A. Guda, Y. Hao, X. Pan, K. Amine, Z. Luo , Adv. Energy Mater., 2019,9, 1803689.
DOI URL |
[52] |
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge, J. Ma, B. Wen, S. Zhang, Q. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, H. Wu , Nat. Commun., 2017,8, 1490.
DOI URL PMID |
[53] |
X. Mao, L. Zhang, G. Kour, S. Zhou, S. Wang, C. Yan, Z. Zhu, A. Du , ACS Appl. Mater. Interfaces, 2019,11, 17410-17415.
DOI URL PMID |
[54] |
H. Sun, S. Liu, M. Wang, T. Qian, J. Xiong, C. Yan , ACS Appl. Mater. Interfaces, 2019,11, 33054-33061.
DOI URL PMID |
[55] |
N. Xuan, J. Chen, J. Shi, Y. Yue, P. Zhuang, K. Ba, Y. Sun, J. Shen, Y. Liu, B. Ge, Z. Sun , Chem. Mater., 2018,31, 429-435.
DOI URL |
[56] |
C. Wu, X. Zhang, Z. Xia, M. Shu, H. Li, X. Xu, R. Si, A. I. Rykov, J. Wang, S. Yu, S. Wang, G. Sun , J. Mater. Chem. A, 2019,7, 14001-14010.
DOI URL |
[57] |
C. Zhu, Q. Shi, S. Feng, D. Du, Y. Lin , ACS Energy Lett., 2018,3, 1713-1721.
DOI URL |
[58] |
Y. Peng, B. Lu, S. Chen , Adv. Mater., 2018,30, e1801995.
DOI URL PMID |
[59] |
S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel, K. S. Kim , Adv. Energy Mater., 2019,9, 1900624.
DOI URL |
[60] |
H. Liu, X. Peng, X. Liu , ChemElectroChem, 2018,5, 2963-2974.
DOI URL |
[61] |
J. Kim, H. E. Kim, H. Lee , ChemSusChem, 2018,11, 104-113.
DOI URL PMID |
[62] |
Y. N. Chen, X. Zhang, Z. Zhou , Small Methods, 2019,3, 1900050.
DOI URL |
[63] |
J. Zhang, C. Liu, B. Zhang , Small Methods, 2019,3, 1800481.
DOI URL |
[64] |
M. Zeng, Y. Li , J. Mater. Chem. A, 2015,3, 14942-14962.
DOI URL |
[65] |
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming , J. Electrochem. Soc., 2005,152, J23-J26.
DOI URL |
[66] |
J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Norskov , J. Electroanal. Chem., 2007,607, 83-89.
DOI URL |
[67] |
I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl , ChemCatChem, 2011,3, 1159-1165.
DOI URL |
[68] |
B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang , Nat. Chem., 2011,3, 634-641.
DOI URL PMID |
[69] |
W. Chen, J. Pei, C. T. He, J. Wan, H. Ren, Y. Wang, J. Dong, K. Wu, W. C. Cheong, J. Mao, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li , Adv. Mater., 2018,30, e1800396.
DOI URL PMID |
[70] |
C. Wu, D. Li, S. Ding, Z. U. Rehman, Q. Liu, S. Chen, B. Zhang, L. Song , J. Phys. Chem. Lett., 2019,10, 6081-6087.
DOI URL PMID |
[71] |
L. Zhang, Y. Jia, H. Liu, L. Zhuang, X. Yan, C. Lang, X. Wang, D. Yang, K. Huang, S. Feng, X. Yao , Angew. Chem. Int. Ed., 2019,58, 9404-9408.
DOI URL |
[72] |
K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y. R. Lu, T. S. Chan, F. M. F. de Groot, Y. Tan , Nat. Commun., 2019,10, 1743.
DOI URL PMID |
[73] |
J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang , Nat. Catal., 2018,1, 985-992.
DOI URL |
[74] |
J. Ji, Y. Zhang, L. Tang, C. Liu, X. Gao, M. Sun, J. Zheng, M. Ling, C. Liang, Z. Lin , Nano Energy, 2019,63, 103849.
DOI URL |
[75] |
Q. Wang, Z. L. Zhao, S. Dong, D. He, M. J. Lawrence, S. Han, C. Cai, S. Xiang, P. Rodriguez, B. Xiang, Z. Wang, Y. Liang, M. Gu , Nano Energy, 2018,53, 458-467.
DOI URL |
[76] |
S. Yuan, Z. Pu, H. Zhou, J. Yu, I. S. Amiinu, J. Zhu, Q. Liang, J. Yang, D. He, Z. Hu, G. Van Tendeloo, S. Mu , Nano Energy, 2019,59, 472-480.
DOI URL |
[77] |
N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton, X. Sun , Nat. Commun., 2016,7, 13638.
DOI URL PMID |
[78] |
Y. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li , Nat. Commun., 2018,9, 1460.
DOI URL PMID |
[79] |
Z. Zhang, Y. Chen, L. Zhou, C. Chen, Z. Han, B. Zhang, Q. Wu, L. Yang, L. Du, Y. Bu, P. Wang, X. Wang, H. Yang, Z. Hu , Nat. Commun., 2019,10, 1657.
DOI URL PMID |
[80] |
L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei , Nat. Catal., 2018,2, 134-141.
DOI URL |
[81] |
M. Li, K. Duanmu, C. Wan, T. Cheng, L. Zhang, S. Dai, W. Chen, Z. Zhao, P. Li, H. Fei, Y. Zhu, R. Yu, J. Luo, K. Zang, Z. Lin, M. Ding, J. Huang, H. Sun, J. Guo, X. Pan, W. A. Goddard, P. Sautet, Y. Huang, X. Duan , Nat. Catal., 2019,2, 495-503.
DOI URL |
[82] |
J. Mao, C.-T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li , Nat. Commun., 2018,9, 4958.
DOI URL PMID |
[83] |
D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y.A. Haleem, S. Duan, J. Lu, B. Ge, P. M. Ajayan, Y. Luo, J. Jiang, L. Song , Nat. Energy, 2019,4, 512-518.
DOI URL |
[84] |
C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du , Adv. Energy Mater., 2019,9, 1803913.
DOI URL |
[85] |
Y. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W. C. Cheong, R. Shen, A. Han, Z. Chen, L. Zheng, J. Luo, Y. Lin, Y. Liu, D. Wang, Q. Peng, Q. Zhang, C. Chen, Y. Li , Angew. Chem. Int. Ed., 2018,57, 8614-8618.
DOI URL |
[86] |
L. Zhang, L. Han, H. Liu, X. Liu, J. Luo , Angew. Chem. Int. Ed., 2017,56, 13694-13698.
DOI URL |
[87] |
J. Yang, B. Chen, X. Liu, W. Liu, Z. Li, J. Dong, W. Chen, W. Yan, T. Yao, X. Duan, Y. Wu, Y. Li , Angew. Chem. Int. Ed., 2018,57, 9495-9500.
DOI URL |
[88] |
L. Ji, P. Yan, C. Zhu, C. Ma, W. Wu, C. Wei, Y. Shen, S. Chu, J. Wang, Y. Du, J. Chen, X. Yang, Q. Xu , Appl. Catal. B, 2019,251, 87-93.
DOI URL |
[89] |
D. Wang, Q. Li, C. Han, Z. Xing, X. Yang , Appl. Catal. B, 2019,249, 91-97.
DOI URL |
[90] |
S. Ye, F. Luo, Q. Zhang, P. Zhang, T. Xu, Q. Wang, D. He, L. Guo, Y. Zhang, C. He, X. Ouyang, M. Gu, J. Liu, X. Sun , Energy Environ. Sci., 2019,12, 1000-1007.
DOI URL |
[91] |
J.-D. Yi, R. Xu, G.-L. Chai, T. Zhang, K. Zang, B. Nan, H. Lin, Y.-L. Liang, J. Lv, J. Luo, R. Si, Y.-B. Huang, R. Cao , J. Mater. Chem. A, 2019,7, 1252-1259.
DOI URL |
[92] |
Y. Wang, L. Chen, Z. Mao, L. Peng, R. Xiang, X. Tang, J. Deng, Z. Wei, Q. Liao , Sci. Bull., 2019,64, 1095-1102.
DOI URL |
[93] |
V. Ramalingam, P. Varadhan, H. C. Fu, H. Kim, D. Zhang, S. Chen, L. Song, D. Ma, Y. Wang, H. N. Alshareef, J. H. He , Adv. Mater., 2019,31, e1903841.
DOI URL PMID |
[94] |
W. Chen, J. Pei, C. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W.-C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li , Angew. Chem. Int. Ed., 2017,56, 16086-16090.
DOI URL |
[95] |
C. Cai, S. Han, Q. Wang, M. Gu , ACS Nano, 2019,13, 8865-8871.
DOI URL PMID |
[96] |
Q. Song, J. Li, L. Wang, L. Pang, H. Liu , Inorg. Chem., 2019,58, 10802-10811.
DOI URL PMID |
[97] |
L. Bai, C. S. Hsu, D. T. L. Alexander, H. M. Chen, X. Hu , J. Am. Chem. Soc., 2019,141, 14190-14199.
DOI URL PMID |
[98] |
Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S. Z. Qiao , J. Am. Chem. Soc., 2017,139, 3336-3339.
DOI URL PMID |
[99] |
X. Han, X. Ling, D. Yu, D. Xie, L. Li, S. Peng, C. Zhong, N. Zhao, Y. Deng, W. Hu , Adv. Mater., 2019,31, e1905622.
DOI URL PMID |
[100] |
L. Liu, H. Su, F. Tang, X. Zhao, Q. Liu , Nano Energy, 2018,46, 110-116.
DOI URL |
[101] |
J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang, P. An, S. Liu, S. T. Lee, T. Ma , Nat. Commun., 2019,10, 2149.
DOI URL PMID |
[102] |
H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang , Nat. Catal., 2018,1, 63-72.
DOI URL |
[103] |
Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C.-R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W.-X. Li, P. Strasser, Y. Wu, Y. Li , Nat. Catal., 2019,2, 304-313.
DOI URL |
[104] |
P. Li, M. Wang, X. Duan, L. Zheng, X. Cheng, Y. Zhang, Y. Kuang, Y. Li, Q. Ma, Z. Feng, W. Liu, X. Sun , Nat. Commun., 2019,10, 1711.
DOI URL PMID |
[105] |
C. Lin, Y. Zhao, H. Zhang, S. Xie, Y. F. Li, X. Li, Z. Jiang, Z. P. Liu , Chem. Sci., 2018,9, 6803-6812.
DOI URL PMID |
[106] |
D. D. Babu, Y. Huang, G. Anandhababu, X. Wang, R. Si, M. Wu, Q. Li, Y. Wang, J. Yao , J. Mater. Chem. A, 2019,7, 8376-8383.
DOI URL |
[107] |
H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X. W. D. Lou , Adv. Mater., 2019,31, e1904548.
DOI URL PMID |
[108] |
J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N. Zhang, L. Xiong, S. Li, B. Y. Xia, G. Feng, M. Liu, L. Huang , Adv. Energy Mater., 2019,9, 1900149.
DOI URL |
[109] |
I. S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li, J. Zhang, H. Tang, H. Zhang, S. Mu , Adv. Funct. Mater., 2018,28, 1704638.
DOI URL |
[110] |
G. Sun, Z. J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, J. Gong , Nat. Commun., 2018,9, 4454.
DOI URL PMID |
[111] |
M. D. Marcinkowski, J. Liu, C. J. Murphy, M. L. Liriano, N. A. Wasio, F. R. Lucci, M. Flytzani-Stephanopoulos, E. C. H. Sykes , ACS Catal., 2016,7, 413-420.
DOI URL |
[112] |
G. Giannakakis, M. Flytzani-Stephanopoulos, E. C. H. Sykes , Acc. Chem. Res., 2019,52, 237-247.
DOI URL PMID |
[113] |
F. Xing, J. Jeon, T. Toyao, K.-I. Shimizu, S. Furukawa , Chem. Sci., 2019,10, 8292-8298.
DOI URL PMID |
[114] |
T. Chao, X. Luo, W. Chen, B. Jiang, J. Ge, Y. Lin, G. Wu, X. Wang, Y. Hu, Z. Zhuang, Y. Wu, X. Hong, Y. Li , Angew. Chem. Int. Ed., 2017,56, 16047-16051.
DOI URL |
[115] |
X. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, T. B. Lu , Angew. Chem. Int. Ed., 2018,57, 9382-9386.
DOI URL |
[116] |
E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong, T. Zhao, Z. Jin, J. Ge, Z. Jiang, C. Liu, W. Xing , Angew. Chem. Int. Ed., 2019,58, 12469-12475.
DOI URL |
[117] |
J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu, H. Zhou, C. Sun, Y. Yu, C. Zhu, Z. Zhu , Small, 2019,15, e1900307.
DOI URL PMID |
[118] |
C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M. H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du, Y. Lin , Small, 2017,13, 1603407.
DOI URL |
[119] |
X. Lyu, G. Li, X. Chen, B. Shi, J. Liu, L. Zhuang, Y. Jia , Small Methods, 2019,3, 1800450.
DOI URL |
[120] |
B. Zhang, J. Zhang, J. Shi, D. Tan, L. Liu, F. Zhang, C. Lu, Z. Su, X. Tan, X. Cheng, B. Han, L. Zheng, J. Zhang , Nat. Commun., 2019,10, 2980.
DOI URL PMID |
[121] |
Y. Wang, J. Li, Z. Wei , ChemElectroChem, 2018,5, 1764-1774.
DOI URL |
[122] |
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li , Angew. Chem. Int. Ed., 2016,55, 10800-10805.
DOI URL |
[123] |
S. Fu, C. Zhu, D. Su, J. Song, S. Yao, S. Feng, M. H. Engelhard, D. Du, Y. Lin , Small, 2018,14, e1703118.
DOI URL PMID |
[124] |
J. Wang, G. Han, L. Wang, L. Du, G. Chen, Y. Gao, Y. Ma, C. Du, X. Cheng, P. Zuo, G. Yin , Small, 2018,14, e1704282.
DOI URL PMID |
[125] |
Z. Yang, Y. Wang, M. Zhu, Z. Li, W. Chen, W. Wei, T. Yuan, Y. Qu, Q. Xu, C. Zhao, X. Wang, P. Li, Y. Li, Y. Wu, Y. Li , ACS Catal., 2019,9, 2158-2163.
DOI URL |
[126] |
K. Huang, R. Wang, H. Wu, H. Wang, X. He, H. Wei, S. Wang, R. Zhang, M. Lei, W. Guo, B. Ge, H. Wu , J. Mater. Chem. A, 2019,7, 25779-25784.
DOI URL |
[127] |
J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. Wei , Angew. Chem. Int. Ed., 2019,58, 7035-7039.
DOI URL |
[128] |
N. Jia, Q. Xu, F. Zhao, H.-X. Gao, J. Song, P. Chen, Z. An, X. Chen, Y. Chen , ACS Appl. Energy Mater., 2018,1, 4982-4990.
DOI URL |
[129] |
Z. Guo, Y. Xie, J. Xiao, Z.J. Zhao, Y. Wang, Z. Xu, Y. Zhang, L. Yin, H. Cao, J. Gong , J. Am. Chem. Soc., 2019,141, 12005-12010.
DOI URL PMID |
[130] |
F. Li, G.-F. Han, H.-J. Noh, S.-J. Kim, Y. Lu, H.Y. Jeong, Z. Fu, J.-B. Baek , Energy Environ. Sci., 2018,11, 2263-2269.
DOI URL |
[131] |
Y. Wang, Y. Nie, W. Ding, S. G. Chen, K. Xiong, X. Q. Qi, Y. Zhang, J. Wang, Z. D. Wei , Chem. Commun., 2015,51, 8942-8945.
DOI URL |
[132] |
Y. Wang, W. Chen, Y. Chen, B. Wei, L. H. Chen, L. S. Peng, R. Xiang, J. Li, Z. C. Wang, Z. D. Wei , J. Mater. Chem. A, 2018,6, 8405-8412.
DOI URL |
[133] |
X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, G. Wu , Adv. Mater., 2018,30, 1706758.
DOI URL |
[134] |
J. Han, X. Meng, L. Lu, J. Bian, Z. Li, C. Sun , Adv. Funct. Mater., 2019,29, 1808872.
DOI URL |
[135] |
Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li , Angew. Chem. Int. Ed., 2017,56, 6937-6941.
DOI URL |
[136] |
X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, Y. Deng , Angew. Chem. Int. Ed., 2019,58, 5359-5364.
DOI URL |
[137] |
F. Xiao, G.-L. Xu, C.-J. Sun, M. Xu, W. Wen, Q. Wang, M. Gu, S. Zhu, Y. Li, Z. Wei, X. Pan, J. Wang, K. Amine, M. Shao , Nano Energy, 2019,61, 60-68.
DOI URL |
[138] |
W. Zhao, G. Wan, C. Peng, H. Sheng, J. Wen, H. Chen , ChemSusChem, 2018,11, 3473-3479.
DOI URL PMID |
[139] |
D. Ji, L. Fan, L. Li, S. Peng, D. Yu, J. Song, S. Ramakrishna, S. Guo , Adv. Mater., 2019,31, e1808267.
DOI URL PMID |
[140] |
B. Q. Li, C. X. Zhao, S. Chen, J. N. Liu, X. Chen, L. Song, Q. Zhang , Adv. Mater., 2019,31, e1900592.
DOI URL PMID |
[141] |
P. Peng, L. Shi, F. Huo, S. Zhang, C. Mi, Y. Cheng, Z. Xiang , ACS Nano, 2019,13, 878-884.
DOI URL PMID |
[142] |
G. Wan, X.-M. Lin, J. Wen, W. Zhao, L. Pan, J. Tian, T. Li, H. Chen, J. Shi , Chem. Mater., 2018,30, 7494-7502.
DOI URL |
[143] |
Z. K. Yang, C. Z. Yuan, A. W. Xu , Nanoscale, 2018,10, 16145-16152.
DOI URL PMID |
[144] |
Y. Lin, P. Liu, E. Velasco, G. Yao, Z. Tian, L. Zhang, L. Chen , Adv. Mater., 2019,31, e1808193.
URL PMID |
[145] |
H. E. Kim, I. H. Lee, J. Cho, S. Shin, H. C. Ham, J. Y. Kim, H. Lee , ChemElectroChem, 2019,6, 4757-4764.
DOI URL |
[146] |
L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao , Nano Energy, 2018,50, 691-698.
DOI URL |
[147] |
Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu, Q. Jia, W. Fan, G. Wang, D. Dang, M. Li, K. Zang, J. Luo, Y. Hu, S. Liao, X. Sun, S. Mukerjee , J. Mater. Chem. A, 2019,7, 5020-5030.
DOI URL |
[148] |
H. Fei, J. Dong, C. Wan, Z. Zhao, X. Xu, Z. Lin, Y. Wang, H. Liu, K. Zang, J. Luo, S. Zhao, W. Hu, W. Yan, I. Shakir, Y. Huang, X. Duan , Adv. Mater., 2018,30, e1802146.
DOI URL PMID |
[149] |
H. L. Fei, J. C. Dong, M. J. Arellano-Jimenez, G. L. Ye, N. D. Kim, E. L. G. Samuel, Z. W. Peng, Z. Zhu, F. Qin, J. M. Bao, M. J. Yacaman, P. M. Ajayan, D. L. Chen, J. M. Tour , Nat. Commun., 2015,6, 8668.
URL PMID |
[150] |
H. J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen , Angew. Chem. Int. Ed., 2015,54, 14031-14035.
DOI URL |
[151] |
M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E. I. Kauppinen, T. Kallio, K. Laasonen , ACS Catal., 2017,7, 3121-3130.
DOI URL |
[152] |
Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W.C. Cheong, R. Shen, N. Fu, L. Gu, Z. Zhuang, C. Chen, D. Wang, Q. Peng, J. Li, Y. Li , Adv. Mater., 2018,30, e1800588.
DOI URL PMID |
[153] |
A. Han, W. Chen, S. Zhang, M. Zhang, Y. Han, J. Zhang, S. Ji, L. Zheng, Y. Wang, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li , Adv. Mater., 2018,30, e1706508.
DOI URL PMID |
[154] |
P. Song, M. Luo, X. Liu, W. Xing, W. Xu, Z. Jiang, L. Gu , Adv. Funct. Mater., 2017,27, 1700802.
DOI URL |
[155] |
G. Wan, P. Yu, H. Chen, J. Wen, C.-J. Sun, H. Zhou, N. Zhang, Q. Li, W. Zhao, B. Xie, T. Li, J. Shi , Small, 2018,14, 1704319.
DOI URL |
[156] |
H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, T. Zhang , Nat. Commun., 2019,10, 4585.
DOI URL PMID |
[157] |
S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee , Angew. Chem. Int. Ed., 2016,55, 2058-2062.
DOI URL |
[158] |
Y. Guan, Y. Feng, J. Wan, X. Yang, L. Fang, X. Gu, R. Liu, Z. Huang, J. Li, J. Luo, C. Li, Y. Wang , Small, 2018,14, e1800697.
DOI URL PMID |
[159] |
H.-F. Zhong, H. Yin, D.-X. Zhang, L.-Y. Gan, P. Wang , J. Phys. Chem. C, 2019,123, 24220-24224.
DOI URL |
[160] |
S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee , ACS Catal., 2017,7, 1301-1307.
DOI URL |
[161] |
J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, B. Zhang , J. Am. Chem. Soc., 2018,140, 3876-3879.
DOI URL PMID |
[162] |
H. Zhang, L. Yu, T. Chen, W. Zhou, X. W. D. Lou , Adv. Funct. Mater., 2018,28, 1807086.
DOI URL |
[163] |
Y. Li, L. Wang, A. Song, M. Xia, Z. Li, G. Shao , Electrochim. Acta, 2018,268, 268-275.
DOI URL |
[164] |
R. Luo, M. Luo, Z. Wang, P. Liu, S. Song, X. Wang, M. Chen , Nanoscale, 2019,11, 7123-7128.
DOI URL PMID |
[165] |
D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang, Y. Yu, W. C. Cheong, L. Zheng, F. Ren, G. Ying, X. Cao, D. Wang, Q. Peng, G. Wang, C. Chen , J. Am. Chem. Soc., 2019,141, 4086-4093.
DOI URL PMID |
[166] |
Y. J. Gao, H. Zhuo, Y. Y. Cao, X. Sun, G. L. Zhuang, S. W. Deng, X. Zhong, Z. Z. Wei, J. G. Wang , Chin. J. Catal., 2019,40, 152-159.
DOI URL |
[167] |
W. Zhong, Y. Liu, M. Deng, Y. Zhang, C. Jia, O.V. Prezhdo, J. Yuan, J. Jiang , J. Mater. Chem. A, 2018,6, 11105-11112.
DOI URL |
[168] |
X. Li, P. Cui, W. Zhong, J. Li, X. Wang, Z. Wang, J. Jiang , Chem. Commun., 2016,52, 13233-13236.
DOI URL |
[169] |
C. Deng, R. He, W. Shen, M. Li , Phys. Chem. Chem. Phys., 2019,21, 18589-18594.
DOI URL PMID |
[170] |
Z. Feng, R. Li, Y. Ma, Y. Li, D. Wei, Y. Tang, X. Dai , Phys. Chem. Chem. Phys., 2019,21, 19651-19659.
DOI URL PMID |
[171] |
Y. Zhao, D. Ma, J. Zhang, Z. Lu, Y. Wang , Phys. Chem. Chem. Phys., 2019,21, 20432-20441.
DOI URL PMID |
[172] |
Y. Zhou, G. Gao, J. Kang, W. Chu, L.-W. Wang , J. Mater. Chem. A, 2019,7, 12050-12059.
DOI URL |
[173] |
T. He, S.K. Matta, G. Will, A. Du , Small Methods, 2019,3, 1800419.
DOI URL |
[174] |
Y. Zhou, G. Gao, J. Kang, W. Chu, L.W. Wang , Nanoscale, 2019,11, 18169-18175.
DOI URL PMID |
[175] |
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao , Energy Environ. Sci., 2015,8, 1594-1601.
DOI URL |
[176] |
T. H. M. Lau, X. Lu, J. Kulhavy, S. Wu, L. Lu, T. S. Wu, R. Kato, J. S. Foord, Y. L. Soo, K. Suenaga, S. C. E. Tsang , Chem. Sci., 2018,9, 4769-4776.
DOI URL PMID |
[177] |
K. Jiang, S. Back, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J. K. Norskov, S. Siahrostami, H. Wang , Nat. Commun., 2019,10, 3997.
DOI URL PMID |
[178] |
F. Li, Y. Bu, G. F. Han, H. J. Noh, S. J. Kim, I. Ahmad, Y. Lu, P. Zhang, H. Y. Jeong, Z. Fu, Q. Zhong, J. B. Baek , Nat. Commun., 2019,10, 2623.
DOI URL PMID |
[179] |
Y. Ren, Y. Tang, L. Zhang, X. Liu, L. Li, S. Miao, D. Sheng Su, A. Wang, J. Li, T. Zhang , Nat. Commun., 2019,10, 4500.
DOI URL PMID |
[180] |
L. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Pan, P. Christopher , Nat. Mater., 2019,18, 746-751.
URL PMID |
[181] |
Z. Chen, W. Gong, Z. Liu, S. Cong, Z. Zheng, Z. Wang, W. Zhang, J. Ma, H. Yu, G. Li, W. Lu, W. Ren, Z. Zhao , Nano Energy, 2019,60, 394-403.
DOI URL |
[182] |
Z. Jakub, J. Hulva, M. Meier, R. Bliem, F. Kraushofer, M. Setvin, M. Schmid, U. Diebold, C. Franchini, G. S. Parkinson , Angew. Chem. Int. Ed., 2019,58, 13961-13968.
DOI URL |
[183] |
Y. Pan, Y. Chen, K. Wu, Z. Chen, S. Liu, X. Cao, W. C. Cheong, T. Meng, J. Luo, L. Zheng, C. Liu, D. Wang, Q. Peng, J. Li, C. Chen , Nat. Commun., 2019,10, 4290.
DOI URL PMID |
[184] |
W. Deng, H. Jiang, C. Chen, L. Yang, Y. Zhang, S. Peng, S. Wang, Y. Tan, M. Ma, Q. Xie , ACS Appl. Mater. Interfaces, 2016,8, 13341-13347.
DOI URL PMID |
[185] |
C. Chen, G. Chen, X. Kong , Inorg. Chem., 2018,57, 13020-13026.
DOI URL PMID |
[186] |
Y. Zhou, G. Gao, Y. Li, W. Chu, L. W. Wang , Phys. Chem. Chem. Phys., 2019,21, 3024-3032.
DOI URL PMID |
[187] |
G. Gao, S. Bottle, A. Du , Catal. Sci. Technol., 2018,8, 996-1001.
DOI URL |
[188] |
H. Xu, D. Cheng, D. Cao, X.C. Zeng , Nat. Catal., 2018,1, 339-348.
DOI URL |
[189] |
H. C. Kwon, M. Kim, J. P. Grote, S. J. Cho, M. W. Chung, H. Kim, D. H. Won, A. R. Zeradjanin, K. J. J. Mayrhofer, M. Choi, H. Kim, C. H. Choi , J. Am. Chem. Soc., 2018,140, 16198-16205.
DOI URL PMID |
[190] |
L. Zhang, R. Si, H. Liu, N. Chen, Q. Wang, K. Adair, Z. Wang, J. Chen, Z. Song, J. Li, M. N. Banis, R. Li, T. K. Sham, M. Gu, L. M. Liu, G. A. Botton, X. Sun , Nat. Commun., 2019,10, 4936.
DOI URL PMID |
[191] |
W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao , Angew. Chem. Int. Ed., 2019,58, 6972-6976.
DOI URL |
[192] |
M. A. Hunter, J. M. T. A. Fischer, Q. Yuan, M. Hankel, D. J. Searles , ACS Catal., 2019,9, 7660-7667.
DOI URL |
[193] |
D. Zhang, W. Chen, Z. Li, Y. Chen, L. Zheng, Y. Gong, Q. Li, R. Shen, Y. Han, W. C. Cheong, L. Gu, Y. Li , Chem. Commun., 2018,54, 4274-4277.
DOI URL |
[194] |
Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, L. Xu, Y. Tang , Adv. Mater., 2019,31, e1806312.
DOI URL PMID |
[195] |
Y. Cheng, S. Zhao, B. Johannessen, J. P. Veder, M. Saunders, M. R. Rowles, M. Cheng, C. Liu, M. F. Chisholm, R. De Marco, H. M. Cheng, S. Z. Yang, S. P. Jiang , Adv. Mater., 2018,30, e1706287.
DOI URL PMID |
[196] |
H. Jiang, Q. He, C. Wang, H. Liu, Y. Zhang, Y. Lin, X. Zheng, S. Chen, P. M. Ajayan, L. Song , Adv. Energy Mater., 2018,8, 1800436.
DOI URL |
[197] |
X. Qiu, X. Yan, H. Pang, J. Wang, D. Sun, S. Wei, L. Xu, Y. Tang , Adv. Sci., 2019,6, 1801103.
DOI URL |
[198] |
Z. Zhang, J. Sun, F. Wang, L. Dai , Angew. Chem. Int. Ed., 2018,57, 9038-9043.
DOI URL |
[199] | S. Zhao, Y. Cheng, J.-P. Veder, B. Johannessen, M. Saunders, L. Zhang, C. Liu, M. F. Chisholm, R. De Marco, J. Liu, S.-Z. Yang, S. P. Jiang , ACS Appl. Energy Mater., 2018,1, 5286-5297. |
[200] |
X. Sun, S. Sun, S. Gu, Z. Liang, J. Zhang, Y. Yang, Z. Deng, P. Wei, J. Peng, Y. Xu, C. Fang, Q. Li, J. Han, Z. Jiang, Y. Huang , Nano Energy, 2019,61, 245-250.
DOI URL |
[201] |
K. Chi, Z. Chen, F. Xiao, W. Guo, W. Xi, J. Liu, H. Yan, Z. Zhang, J. Xiao, J. Liu, J. Luo, S. Wang, K. P. Loh , J. Mater. Chem. A, 2019,7, 15575-15579.
DOI URL |
[202] |
H. Zhang, W. Zhou, T. Chen, B. Y. Guan, Z. Li, X. W. Lou , Energy Environ. Sci., 2018,11, 1980-1984.
DOI URL |
[203] |
W. Xie, Y. Song, S. Li, J. Li, Y. Yang, W. Liu, M. Shao, M. Wei , Adv. Funct. Mater., 2019,29, 1906477.
DOI URL |
[204] |
T. Li, J. Liu, Y. Song, F. Wang , ACS Catal., 2018,8, 8450-8458.
DOI URL |
[205] |
J. Li, H. Liu, M. Wang, C. Lin, W. Yang, J. Meng, Y. Xu, K. A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou, L. Mai , Chem. Commun., 2019,55, 334-337.
DOI URL |
[206] |
R. Shi, C. Tian, X. Zhu, C. Y. Peng, B. Mei, L. He, X. L. Du, Z. Jiang, Y. Chen, S. Dai , Chem. Sci., 2019,10, 2585-2591.
DOI URL PMID |
[207] |
G. Han, Y. Zheng, X. Zhang, Z. Wang, Y. Gong, C. Du, M. N. Banis, Y.-M. Yiu, T.-K. Sham, L. Gu, Y. Sun, Y. Wang, J. Wang, Y. Gao, G. Yin, X. Sun , Nano Energy, 2019,66, 104088.
DOI URL |
[208] |
R. Lang, W. Xi, J. C. Liu, Y. T. Cui, T. Li, A. F. Lee, F. Chen, Y. Chen, L. Li, L. Li, J. Lin, S. Miao, X. Liu, A. Q. Wang, X. Wang, J. Luo, B. Qiao, J. Li, T. Zhang , Nat. Commun., 2019,10, 234.
DOI URL PMID |
[209] |
L. Wang, M.-X. Chen, Q. Q. Yan, S. L. Xu, S.-Q. Chu, P. Chen, Y. Lin, H. W. Liang, Sci. Adv., 2019, 5, eaax6322.
DOI URL PMID |
[1] | Dan Zhou, Leilei Zhang, Wengang Liu, Gang Xu, Ji Yang, Qike Jiang, Aiqin Wang, Jianzhong Yin. Reaction kinetics and phase behavior in the chemoselective hydrogenation of 3-nitrostyrene over Co-N-C single-atom catalyst in compressed CO2 [J]. Chinese Journal of Catalysis, 2021, 42(9): 1617-1624. |
[2] | Chun Zhu, Jin-Xia Liang, Yang Meng, Jian Lin, Zexing Cao. Mn-corrolazine-based 2D-nanocatalytic material with single Mn atoms for catalytic oxidation of alkane to alcohol [J]. Chinese Journal of Catalysis, 2021, 42(6): 1030-1039. |
[3] | Jun-Sheng Jiang, He-Lei Wei, Ai-Dong Tan, Rui Si, Wei-De Zhang, Yu-Xiang Yu. Fabricating high-loading Fe-N4 single-atom catalysts for oxygen reduction reaction by carbon-assisted pyrolysis of metal complexes [J]. Chinese Journal of Catalysis, 2021, 42(5): 753-761. |
[4] | Weiyin Wang, Lu Lin, Haifeng Qi, Wenxiu Cao, Zhi Li, Shaohua Chen, Xiaoxuan Zou, Tiehong Chen, Nanfang Tang, Weiyu Song, Aiqin Wang, Wenhao Luo. MIL-53 (Al) derived single-atom Rh catalyst for the selective hydrogenation of m-chloronitrobenzene into m-chloroaniline [J]. Chinese Journal of Catalysis, 2021, 42(5): 824-834. |
[5] | Jiayue Rong, Zhenzhen Wang, Jiaqi Lv, Ming Fan, Ruifeng Chong, Zhixian Chang. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting [J]. Chinese Journal of Catalysis, 2021, 42(11): 1999-2009. |
[6] | Yang Li, Ningsi Zhang, Changhao Liu, Yuanming Zhang, Xiaoming Xu, Wenjing Wang, Jianyong Feng, Zhaosheng Li, Zhigang Zou. Metastable-phase β-Fe2O3 photoanodes for solar water splitting with durability exceeding 100 h [J]. Chinese Journal of Catalysis, 2021, 42(11): 1992-1998. |
[7] | Huimin Wang, Weihan Bing, Chunyuan Chen, Yusen Yang, Ming Xu, Lifang Chen, Lei Zheng, Xiaolin Li, Xin Zhang, Jianjun Yin, Min Wei. Geometric effect promoted hydrotalcites catalysts towards aldol condensation reaction [J]. Chinese Journal of Catalysis, 2020, 41(8): 1279-1287. |
[8] | Aisulu Aitbekova, Cody J. Wrasman, Andrew R. Riscoe, Larissa Y. Kunz, Matteo Cargnello. Determining number of sites on ceria stabilizing single atoms via metal nanoparticle redispersion [J]. Chinese Journal of Catalysis, 2020, 41(6): 998-1005. |
[9] | Maoxiang Zhou, Man Yang, Xiaofeng Yang, Xiaochen Zhao, Lei Sun, Weiqiao Deng, Aiqin Wang, Jun Li, Tao Zhang. On the mechanism of H2 activation over single-atom catalyst: An understanding of Pt1/WOx in the hydrogenolysis reaction [J]. Chinese Journal of Catalysis, 2020, 41(3): 524-532. |
[10] | Shaoce Zhang, Zhifeng Liu, Weiguo Yan, Zhengang Guo, Mengnan Ruan. Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2020, 41(12): 1884-1893. |
[11] | Zhifeng Liu, Xue Lu. Multifarious function layers photoanode based on g-C3N4 for photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2018, 39(9): 1527-1533. |
[12] | Qizhao Wang, Tengjiao Niu, Lei Wang, Jingwei Huang, Houde She. NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2018, 39(4): 613-618. |
[13] | Yuanxing Fang, Yiwen Ma, Xinchen Wang. Efficient development of Type-II TiO2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance [J]. Chinese Journal of Catalysis, 2018, 39(3): 438-445. |
[14] | Pengxin Liu, Jie Chen, Nanfeng Zheng. Photochemical route for preparing atomically dispersed Pd1/TiO2 catalysts on (001)-exposed anatase nanocrystals and P25 [J]. Chinese Journal of Catalysis, 2017, 38(9): 1574-1580. |
[15] | Feng Yan, Caixian Zhao, Lanhua Yi, Jingcai Zhang, Binghui Ge, Tao Zhang, Weizhen Li. Effect of the degree of dispersion of Pt over MgAl2O4 on the catalytic hydrogenation of benzaldehyde [J]. Chinese Journal of Catalysis, 2017, 38(9): 1613-1620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||