Chinese Journal of Catalysis ›› 2022, Vol. 43 ›› Issue (10): 2708-2719.DOI: 10.1016/S1872-2067(21)64053-6
• Articles • Previous Articles Next Articles
Zhaobo Fan, Xin Guo(), Mengxue Yang, Zhiliang Jin(
)
Received:
2022-01-08
Accepted:
2022-03-03
Online:
2022-10-18
Published:
2022-09-30
Contact:
Xin Guo, Zhiliang Jin
Supported by:
Zhaobo Fan, Xin Guo, Mengxue Yang, Zhiliang Jin. Mechanochemical preparation and application of graphdiyne coupled with CdSe nanoparticles for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2022, 43(10): 2708-2719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)64053-6
Fig. 1. XRD patterns of CdSe and GDY (a), GDY/CdSe-5, GDY/CdSe-10, GDY/CdSe-15, GDY/CdSe-20 and GDY/CdSe-25 (b). (c) FTIR patterns of CdSe, GDY, GDY/CdSe-20. (d) Raman spectrum of GDY.
Fig. 2. SEM images of GDY (a), CdSe (b), GDY/CdSe-20 (c). (d) TEM images of GDY/CdSe-20. (e) HRTEM image of GDY/CdSe-20. (f) EDX image of GDY/CdSe-20. (g) Elemental mapping of GDY/CdSe-20.
Fig. 3. XPS patterns: (a) full-scan spectra of CdSe, GDY, GDY/CdSe-20; (b) C 1s spectra of GDY, GDY/CdSe-20; Cd 3d (c) and Se 3d (d) spectra of CdSe, GDY/CdSe-20.
Sample | ABET (m2 g-1) | Pore volume (cm3 g-1) | Average pore size (nm) |
---|---|---|---|
CdSe | 69 | 0.17 | 8 |
GDY | 172 | 0.47 | 13 |
GDY/CdSe-20 | 120 | 0.28 | 10 |
Table 1 Specific physical adsorption performance parameters of CdSe, GDY, and GDY/CdSe-20.
Sample | ABET (m2 g-1) | Pore volume (cm3 g-1) | Average pore size (nm) |
---|---|---|---|
CdSe | 69 | 0.17 | 8 |
GDY | 172 | 0.47 | 13 |
GDY/CdSe-20 | 120 | 0.28 | 10 |
Fig. 5. (a) UV-vis DRS profiles of GDY, CdSe, GDY/CdSe-5, GDY/CdSe-10, GDY/CdSe-15, GDY/CdSe-20, and GDY/CdSe-25. (b) Corresponding plots of (αhν)1/2 versus hν for CdSe and VB-XPS spectrum of GDY (inset).
Fig. 6. (a,b) H2 production activity of GDY, CdSe, and GDY/CdSe-x composite catalyst. (c) H2 evolution with GDY/CdSe-20 within 5 h using di?erent sacrificial agents. (d) Stability data for GDY/CdSe-20. SEM (e) and XRD (f) images of GDY/CdSe-20 after hydrogen evolution cyclic reaction.
Photocatalyst | Sacrificial reagent | Light source | HER (μmol g-1 h-1) | Ref. |
---|---|---|---|---|
GDY/CdSe | Na2S/Na2SO3 | 5 W LED (λ ≥ 420) | 6374 | This work |
TF-g-C3N4/CdSe | Na2S/Na2SO3 | 400 W lamp (λ ≥ 420) | 6200 | [ |
CeO2/CdSe | Na2S/Na2SO3 | 300 W lamp (λ ≥ 300) | 283 | [ |
CdSe/rGO/g-C3N4 | ascorbic acid | 500 W lamp (λ ≥ 400) | 1435 | [ |
CdS/GDY | triethanolamine | 5 W LED (λ ≥ 450) | 820 | [ |
NiAl-LDH/GDY | triethanolamine | 5 W LED (λ ≥ 420) | 649 | [ |
GD-CuI-NiTiO3 | triethanolamine | 5 W LED (λ ≥ 420) | 509 | [ |
Table 2 Comparison of documented photocatalytic hydrogen production rates with that of GDY/CdSe-20.
Photocatalyst | Sacrificial reagent | Light source | HER (μmol g-1 h-1) | Ref. |
---|---|---|---|---|
GDY/CdSe | Na2S/Na2SO3 | 5 W LED (λ ≥ 420) | 6374 | This work |
TF-g-C3N4/CdSe | Na2S/Na2SO3 | 400 W lamp (λ ≥ 420) | 6200 | [ |
CeO2/CdSe | Na2S/Na2SO3 | 300 W lamp (λ ≥ 300) | 283 | [ |
CdSe/rGO/g-C3N4 | ascorbic acid | 500 W lamp (λ ≥ 400) | 1435 | [ |
CdS/GDY | triethanolamine | 5 W LED (λ ≥ 450) | 820 | [ |
NiAl-LDH/GDY | triethanolamine | 5 W LED (λ ≥ 420) | 649 | [ |
GD-CuI-NiTiO3 | triethanolamine | 5 W LED (λ ≥ 420) | 509 | [ |
Photocatalyst | τ1 [ns] (B1) | τ2 [ns] (B2) | τ3 [ns] (B3) | τav [ns] | χ2 |
---|---|---|---|---|---|
CdSe | 5.08 (33.94 %) | 14.87 (35.97%) | 0.90 (30.09%) | 2.48 | 1.61 |
GDY/CdSe-20 | 4.58 (35.08%) | 13.97 (33.08%) | 0.62 (31.84%) | 1.69 | 1.77 |
Table 3 Decay parameters of pure CdSe catalyst and composite GDY/CdSe-20 catalyst.
Photocatalyst | τ1 [ns] (B1) | τ2 [ns] (B2) | τ3 [ns] (B3) | τav [ns] | χ2 |
---|---|---|---|---|---|
CdSe | 5.08 (33.94 %) | 14.87 (35.97%) | 0.90 (30.09%) | 2.48 | 1.61 |
GDY/CdSe-20 | 4.58 (35.08%) | 13.97 (33.08%) | 0.62 (31.84%) | 1.69 | 1.77 |
Fig. 9. (a) Schematic illustration of charge transfer process at 0D/2D CdSe/GDY heterojunction. (b) Band structure of CdSe and GDY and electron transfer model for photocatalytic hydrogen evolution.
|
[1] | Xiao-Juan Li, Ming-Yu Qi, Jing-Yu Li, Chang-Long Tan, Zi-Rong Tang, Yi-Jun Xu. Visible light-driven dehydrocoupling of thiols to disulfides and H2 evolution over PdS-decorated ZnIn2S4 composites [J]. Chinese Journal of Catalysis, 2023, 51(8): 55-65. |
[2] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[3] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[4] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[5] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[6] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[7] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[8] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[9] | Ni Wang, Xue-Peng Zhang, Jinxiu Han, Haitao Lei, Qingxin Zhang, Hang Zhang, Wei Zhang, Ulf-Peter Apfel, Rui Cao. Promoting hydrogen evolution reaction with a sulfonic proton relay [J]. Chinese Journal of Catalysis, 2023, 45(2): 88-94. |
[10] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[11] | Qiyou Wang, Yujie Gong, Yao Tan, Xin Zi, Reza Abazari, Hongmei Li, Chao Cai, Kang Liu, Junwei Fu, Shanyong Chen, Tao Luo, Shiguo Zhang, Wenzhang Li, Yifa Sheng, Jun Liu, Min Liu. Cooperative alkaline hydrogen evolution via inducing local electric field and electron localization [J]. Chinese Journal of Catalysis, 2023, 54(11): 229-237. |
[12] | Chao Wu, Kangle Lv, Xin Li, Qin Li. Dual cocatalysts for photocatalytic hydrogen evolution: Categories, synthesis, and design considerations [J]. Chinese Journal of Catalysis, 2023, 54(11): 137-160. |
[13] | Hui Su, Jing Jiang, Shaojia Song, Bohan An, Ning Li, Yangqin Gao, Lei Ge. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting [J]. Chinese Journal of Catalysis, 2023, 44(1): 7-49. |
[14] | Xue Bai, Jingqi Guan. MXenes for electrocatalysis applications: Modification and hybridization [J]. Chinese Journal of Catalysis, 2022, 43(8): 2057-2090. |
[15] | Chuqiang Huang, Jianqing Zhou, Dingshuo Duan, Qiancheng Zhou, Jieming Wang, Bowen Peng, Luo Yu, Ying Yu. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism [J]. Chinese Journal of Catalysis, 2022, 43(8): 2091-2110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||