Chinese Journal of Catalysis ›› 2025, Vol. 71: 285-296.DOI: 10.1016/S1872-2067(24)60260-3
• Articles • Previous Articles Next Articles
Zhiruo Guo, Xiaohui Liu, Yong Guo, Yanqin Wang*()
Received:
2024-12-30
Accepted:
2025-01-16
Online:
2025-04-18
Published:
2025-04-13
Contact:
* E-mail: Supported by:
Zhiruo Guo, Xiaohui Liu, Yong Guo, Yanqin Wang. Enhanced conversion of lignin into mono-cycloalkanes via C-C bonds cleavage over multifunctional Pt-Nb/MOR catalyst[J]. Chinese Journal of Catalysis, 2025, 71: 285-296.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60260-3
Entry | Catalyst | Conversion /% | Yield/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Monomers | |||
1 | 2Pt-2Nb/MOR | 99.9 | — | 1.7 | 4.7 | 5.1 | 48.2 | 8.5 | 19.1 | 3.5 | 75.8 |
2 | 2Pt-2Nb/β40 | 99.9 | — | — | 3.5 | — | 38.5 | 9.6 | 18.3 | — | 66.4 |
3 | 2Pt-2Nb/β25 | 99.9 | — | — | 10.7 | — | 22.6 | 2.5 | 11.8 | — | 36.9 |
4 | 2Pt-2Nb/ZSM-5 | 56.1 | 6.6 | 15.5 | 5.9 | — | 19.7 | 1.0 | 3.1 | 1.7 | 23.8 |
5 | 2Pt-2Nb/USY | 78.1 | 2.7 | 17.5 | 6.0 | 1.3 | 18.4 | 1.6 | 4.5 | 15.2 | 24.5 |
6 | 2Pt/Nb2O5 | 99.9 | 1.2 | 24.2 | 14.6 | 8.9 | 29.3 | 12.5 | 1.4 | 0.2 | 43.2 |
7 | 2Pt/NbOPO4 | 99.9 | 1.4 | 20.1 | 17.6 | 7.6 | 37.1 | 11.7 | 1.7 | 0.4 | 50.5 |
Table 1 Catalytic performance of various 2Pt-2Nb/zeolite catalysts.
Entry | Catalyst | Conversion /% | Yield/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Monomers | |||
1 | 2Pt-2Nb/MOR | 99.9 | — | 1.7 | 4.7 | 5.1 | 48.2 | 8.5 | 19.1 | 3.5 | 75.8 |
2 | 2Pt-2Nb/β40 | 99.9 | — | — | 3.5 | — | 38.5 | 9.6 | 18.3 | — | 66.4 |
3 | 2Pt-2Nb/β25 | 99.9 | — | — | 10.7 | — | 22.6 | 2.5 | 11.8 | — | 36.9 |
4 | 2Pt-2Nb/ZSM-5 | 56.1 | 6.6 | 15.5 | 5.9 | — | 19.7 | 1.0 | 3.1 | 1.7 | 23.8 |
5 | 2Pt-2Nb/USY | 78.1 | 2.7 | 17.5 | 6.0 | 1.3 | 18.4 | 1.6 | 4.5 | 15.2 | 24.5 |
6 | 2Pt/Nb2O5 | 99.9 | 1.2 | 24.2 | 14.6 | 8.9 | 29.3 | 12.5 | 1.4 | 0.2 | 43.2 |
7 | 2Pt/NbOPO4 | 99.9 | 1.4 | 20.1 | 17.6 | 7.6 | 37.1 | 11.7 | 1.7 | 0.4 | 50.5 |
Entry | Catalysts | Conversion /% | Yield/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Monomers | |||
1 | 2Pt-2Nb | 99.9 | — | 1.7 | 4.7 | 5.1 | 48.2 | 8.5 | 19.1 | 3.5 | 75.8 |
2 | 2Pt | 99.9 | 12.7 | 10.0 | 17.9 | 6.5 | 20.7 | 5.2 | 6.8 | 13.8 | 32.7 |
3 | 2Pt-1Nb | 99.9 | 2.4 | 2.7 | 9.14 | 4.2 | 33.4 | 8.1 | 11.0 | 17.9 | 52.5 |
4 | 2Pt-5Nb | 99.9 | — | 3.8 | 17.6 | 13.0 | 30.1 | 12.9 | 9.8 | 7.1 | 52.8 |
5 | 2Pt-10Nb | 99.9 | — | 13.0 | 12.6 | 4.1 | 24.8 | 15.2 | 9.6 | 15.7 | 49.6 |
6 | 1Pt-2Nb | 89.4 | 25.1 | 20.7 | 8.1 | 2.4 | 12.5 | 9.0 | 2.1 | 4.2 | 23.6 |
7 | 0.5Pt-2Nb | 85.5 | 36.7 | 9.6 | 2.4 | 0.7 | 8.9 | 6.8 | 1.5 | 11.7 | 17.2 |
8 | 2Nb | 25.0 | 17.9 | — | — | — | — | — | — | — | — |
Table 2 Catalytic performance of Pt-Nb/MOR catalysts with different metal contents.
Entry | Catalysts | Conversion /% | Yield/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Monomers | |||
1 | 2Pt-2Nb | 99.9 | — | 1.7 | 4.7 | 5.1 | 48.2 | 8.5 | 19.1 | 3.5 | 75.8 |
2 | 2Pt | 99.9 | 12.7 | 10.0 | 17.9 | 6.5 | 20.7 | 5.2 | 6.8 | 13.8 | 32.7 |
3 | 2Pt-1Nb | 99.9 | 2.4 | 2.7 | 9.14 | 4.2 | 33.4 | 8.1 | 11.0 | 17.9 | 52.5 |
4 | 2Pt-5Nb | 99.9 | — | 3.8 | 17.6 | 13.0 | 30.1 | 12.9 | 9.8 | 7.1 | 52.8 |
5 | 2Pt-10Nb | 99.9 | — | 13.0 | 12.6 | 4.1 | 24.8 | 15.2 | 9.6 | 15.7 | 49.6 |
6 | 1Pt-2Nb | 89.4 | 25.1 | 20.7 | 8.1 | 2.4 | 12.5 | 9.0 | 2.1 | 4.2 | 23.6 |
7 | 0.5Pt-2Nb | 85.5 | 36.7 | 9.6 | 2.4 | 0.7 | 8.9 | 6.8 | 1.5 | 11.7 | 17.2 |
8 | 2Nb | 25.0 | 17.9 | — | — | — | — | — | — | — | — |
Fig. 2. Conversion and monomer yield when using phenylcyclohexane (3) as substrates over different catalysts. Reaction conditions: 1.3 mmol phenyl-cyclohexane, 0.05 g catalysts, 5 mL octane, 0.5 MPa H2, 260 °C, 1 h.)
Fig. 3. Conversion and monomer yield when using bicyclohexane (4) as substrates over different catalysts. Reaction conditions: 1.3 mmol bicyclohexane, 0.05 g catalysts, 5 mL Octane, 0.5 MPa H2, 260 °C, 1 h. a 0.5 h.
Fig. 4. Conversion and monomer yield of model compounds over 2Pt-2Nb. Reaction conditions: 1.3 mmol substrate, 0.05 g catalysts, 5 mL octane, 0.5 MPa H2, 260 °C, 12 h. a 24 h.
Fig. 5. Catalytic performance on lignin over 2Pt-2Nb. Reaction conditions: 0.2 g lignin, 0.2 g 2Pt-2Nb/MOR, 5 mL octane, 0.5 MPa H2, 300 °C, 40 h. a 0.2 g 2Pt/NbOPO4 as catalyst.
Catalysts | Pt content a (wt%) | Nb content a (wt%) | ABET (m2/g) | VTotal (cm3/g) | Average pore size (nm) | Pt dispersion b (%) |
---|---|---|---|---|---|---|
MOR | — | — | 409.6 | 0.33 | 3.3 | — |
2Pt | 1.7 | — | 303.6 | 0.16 | 2.1 | 32.9 |
2Pt-2Nb | 1.7 | 2.1 | 395.5 | 0.21 | 2.1 | 30.5 |
2Pt-2Nb-Reuse 3 | 1.5 | 2.0 | 394.1 | 0.21 | 2.1 | 27.1 |
Table 3 Metal contents, BET surface area, pore volume, pore size and Pt dispersion of catalysts.
Catalysts | Pt content a (wt%) | Nb content a (wt%) | ABET (m2/g) | VTotal (cm3/g) | Average pore size (nm) | Pt dispersion b (%) |
---|---|---|---|---|---|---|
MOR | — | — | 409.6 | 0.33 | 3.3 | — |
2Pt | 1.7 | — | 303.6 | 0.16 | 2.1 | 32.9 |
2Pt-2Nb | 1.7 | 2.1 | 395.5 | 0.21 | 2.1 | 30.5 |
2Pt-2Nb-Reuse 3 | 1.5 | 2.0 | 394.1 | 0.21 | 2.1 | 27.1 |
|
[1] | Yitong Wang, Chaofeng Zhang, Cheng Cai, Caoxing Huang, Xiaojun Shen, Hongming Lou, Changwei Hu, Xuejun Pan, Feng Wang, Jun Xie. Advances in humins formation mechanism, inhibition strategies, and value-added applications [J]. Chinese Journal of Catalysis, 2025, 71(4): 25-53. |
[2] | Lin Dong, Zhiqiang Fang, Qianbo Yuan, Yong Fan, Yong Yang, Ping Wang, Shixiong Sheng, Yanqin Wang, Zupeng Chen. Selective utilization of formaldehyde stabilizing additive and methoxy groups in lignin for the production of high-carbon-number arenes [J]. Chinese Journal of Catalysis, 2025, 68(1): 356-365. |
[3] | Yanling Yang, Peijie Han, Yuanbao Zhang, Jingdong Lin, Shaolong Wan, Yong Wang, Haichao Liu, Shuai Wang. Site requirements of supported W2C nanocatalysts for efficient hydrodeoxygenation of m-cresol to aromatics [J]. Chinese Journal of Catalysis, 2024, 67(12): 91-101. |
[4] | Yiwei Fan, Helong Li, Shihao Su, Jinlei Chen, Chunquan Liu, Shuizhong Wang, Xiangya Xu, Guoyong Song. Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar [J]. Chinese Journal of Catalysis, 2022, 43(3): 802-810. |
[5] | Kaiyi Su, Huifang Liu, Chaofeng Zhang, Feng Wang. Photocatalytic conversion of waste plastics to low carbon number organic products [J]. Chinese Journal of Catalysis, 2022, 43(3): 589-594. |
[6] | Dawang Chu, Yingying Xin, Chen Zhao. Production of bio-ethanol by consecutive hydrogenolysis of corn-stalk cellulose [J]. Chinese Journal of Catalysis, 2021, 42(5): 844-854. |
[7] | Chenxin Yang, Henan Chen, Tao Peng, Baiyao Liang, Yun Zhang, Wei Zhao. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective [J]. Chinese Journal of Catalysis, 2021, 42(11): 1831-1842. |
[8] | Di Ma, Shenglu Lu, Xiaohui Liu, Yong Guo, Yanqin Wang. Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports [J]. Chinese Journal of Catalysis, 2019, 40(4): 609-617. |
[9] | Jiaguang Zhang, Loris Lombardo, Gökalp Gözaydın, Paul J. Dyson, Ning Yan. Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals [J]. Chinese Journal of Catalysis, 2018, 39(9): 1445-1452. |
[10] | Xuezhong Wu, Wenqian Jiao, Bing-Zheng Li, Yanming Li, Yahong Zhang, Quanrui Wang, Yi Tang. Decomposition of a β-O-4 lignin model compound over solid Cs-substituted polyoxometalates in anhydrous ethanol:acidity or redox property dependence? [J]. Chinese Journal of Catalysis, 2017, 38(7): 1216-1228. |
[11] | Weiping Deng, Hongxi Zhang, Laiqi Xue, Qinghong Zhang, Ye Wang. Selective activation of the C-O bonds in lignocellulosic biomass for the efficient production of chemicals [J]. Chinese Journal of Catalysis, 2015, 36(9): 1440-1460. |
[12] | Ji Su, Lisha Yang, Reed Nicholas Liu, Hongfei Lin. Low-temperature oxidation of guaiacol to maleic acid over TS-1 catalyst in alkaline aqueous H2O2 solutions [J]. Chinese Journal of Catalysis, 2014, 35(5): 622-630. |
[13] | SONG Qi, CAI Jiaying, ZHANG Junjie, YU Weiqiang, WANG Feng, XU Jie. Hydrogenation and cleavage of the C-O bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst [J]. Chinese Journal of Catalysis, 2013, 34(4): 651-658. |
[14] | Peng Gao, Changzhi Li, Hua Wang, Xiaodong Wang, Aiqin Wang. Perovskite hollow nanospheres for the catalytic wet air oxidation of lignin [J]. Chinese Journal of Catalysis, 2013, 34(10): 1811-1815. |
[15] | Paolo ZUCCA, Antonio RESCIGNO, Enrico SANJUST. Ligninolytic Peroxidase-Like Activity of a Synthetic Metalloporphine Immobilized onto Mercapto-Grafted Crosslinked PVA Inspired by the Active Site of Cytochrome P450 [J]. Chinese Journal of Catalysis, 2011, 32(11): 1663-1666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||