Chinese Journal of Catalysis ›› 2025, Vol. 72: 84-94.DOI: 10.1016/S1872-2067(25)64656-0
• Articles • Previous Articles Next Articles
Xinying Wanga,1, Qing Tianb,1, Yao Chenb, Aipeng Lia,*(), Lianbing Zhangb, Mingming Zhangc, Changzhi Lid,*(
), Qiang Feia,*(
)
Received:
2024-12-13
Accepted:
2025-02-15
Online:
2025-05-18
Published:
2025-05-20
Contact:
*E-mail: feiqiang@xjtu.edu.cn (Q. Fei), licz@dicp.ac.cn (C. Li), liaipeng@xjtu.edu.cn (A. Li).
About author:
1 Contributed equally to this work.
Supported by:
Xinying Wang, Qing Tian, Yao Chen, Aipeng Li, Lianbing Zhang, Mingming Zhang, Changzhi Li, Qiang Fei. A de novo biomimetic enzyme-nanozyme hybrid system for advancing lignin valorization[J]. Chinese Journal of Catalysis, 2025, 72: 84-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64656-0
Scheme 1. Conceptual graph. (a) Inorganic materials for enzyme immobilization. (b) The hybrid system of nanozyme and natural enzyme for depolymerization of lignin to produce aromatic compounds.
Fig. 1. Characterizations of λ-MnO2 nanozyme. (a) TEM. (b) SAED. (c) HRTEM. (d-g) Elemental mapping analysis images. (h) XRD pattern. Mn 2p (i) and O 1s (j) XPS spectra of λ-MnO2. (k,l) Enzymatic activity of CotA and λ-MnO2 for oxidation of ABTS.
Fig. 2. Degradation of lignin by enzyme-nanozyme hybrid system. (a) Degradation rate of lignin. (b) Molecular weight distribution of lignin. (c-f) SEM images taken before and after enzymatic hydrolysis of lignin.
Fig. 3. Product analysis of different catalytic systems. (a) Distribution of aliphatic and aromatic products. (b) Proportion of long-chain aliphatics. (c) Proportion of S-, G- and H-type monomer derivatives.
Fig. 4. Characterization of lignin structure (a) Fourier transform infrared spectra. (b-e) HSQC NMR spectra of lignin aliphatic oxygenated side-chain region (δC/δH 50-90/2.5-6.0) and (f-i) aromatic region (δC/δH 100-150/5.5-8.0).
|
[1] | Zhiruo Guo, Xiaohui Liu, Yong Guo, Yanqin Wang. Enhanced conversion of lignin into mono-cycloalkanes via C-C bonds cleavage over multifunctional Pt-Nb/MOR catalyst [J]. Chinese Journal of Catalysis, 2025, 71(4): 285-296. |
[2] | Yitong Wang, Chaofeng Zhang, Cheng Cai, Caoxing Huang, Xiaojun Shen, Hongming Lou, Changwei Hu, Xuejun Pan, Feng Wang, Jun Xie. Advances in humins formation mechanism, inhibition strategies, and value-added applications [J]. Chinese Journal of Catalysis, 2025, 71(4): 25-53. |
[3] | Lin Dong, Zhiqiang Fang, Qianbo Yuan, Yong Fan, Yong Yang, Ping Wang, Shixiong Sheng, Yanqin Wang, Zupeng Chen. Selective utilization of formaldehyde stabilizing additive and methoxy groups in lignin for the production of high-carbon-number arenes [J]. Chinese Journal of Catalysis, 2025, 68(1): 356-365. |
[4] | Zhaohui Chen, Jun Deng, Yanmei Zheng, Wenjun Zhang, Lin Dong, Zupeng Chen. Modulation of ketyl radical reactivity to mediate the selective synthesis of coupling and carbonyl compounds [J]. Chinese Journal of Catalysis, 2024, 61(6): 135-143. |
[5] | Yanling Yang, Peijie Han, Yuanbao Zhang, Jingdong Lin, Shaolong Wan, Yong Wang, Haichao Liu, Shuai Wang. Site requirements of supported W2C nanocatalysts for efficient hydrodeoxygenation of m-cresol to aromatics [J]. Chinese Journal of Catalysis, 2024, 67(12): 91-101. |
[6] | Jiafa Chen, Peng Bai, Shibo Yuan, Yi He, Zifan Niu, Yicheng Zhao, Yongdan Li. LSPR-assisted W18O49/ZnO S-scheme heterojunction for efficient photocatalytic CO2 N-formylation of aniline [J]. Chinese Journal of Catalysis, 2024, 67(12): 124-134. |
[7] | Jinpeng Li, Jie Chen, Qingshu Zheng, Bo Tu, Tao Tu. Magnetic core-shell composites accessed by coordination assembly boost catalytic CO2 valorization [J]. Chinese Journal of Catalysis, 2023, 48(5): 258-266. |
[8] | Yiwei Fan, Helong Li, Shihao Su, Jinlei Chen, Chunquan Liu, Shuizhong Wang, Xiangya Xu, Guoyong Song. Integration of Ru/C and base for reductive catalytic fractionation of triploid poplar [J]. Chinese Journal of Catalysis, 2022, 43(3): 802-810. |
[9] | Chenxin Yang, Henan Chen, Tao Peng, Baiyao Liang, Yun Zhang, Wei Zhao. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective [J]. Chinese Journal of Catalysis, 2021, 42(11): 1831-1842. |
[10] | Di Ma, Shenglu Lu, Xiaohui Liu, Yong Guo, Yanqin Wang. Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports [J]. Chinese Journal of Catalysis, 2019, 40(4): 609-617. |
[11] | Jiaguang Zhang, Loris Lombardo, Gökalp Gözaydın, Paul J. Dyson, Ning Yan. Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals [J]. Chinese Journal of Catalysis, 2018, 39(9): 1445-1452. |
[12] | Xuezhong Wu, Wenqian Jiao, Bing-Zheng Li, Yanming Li, Yahong Zhang, Quanrui Wang, Yi Tang. Decomposition of a β-O-4 lignin model compound over solid Cs-substituted polyoxometalates in anhydrous ethanol:acidity or redox property dependence? [J]. Chinese Journal of Catalysis, 2017, 38(7): 1216-1228. |
[13] | Xiang Liu, Shushuang Li, Yongmei Liu, Yong Cao. Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis [J]. Chinese Journal of Catalysis, 2015, 36(9): 1461-1475. |
[14] | Weiping Deng, Hongxi Zhang, Laiqi Xue, Qinghong Zhang, Ye Wang. Selective activation of the C-O bonds in lignocellulosic biomass for the efficient production of chemicals [J]. Chinese Journal of Catalysis, 2015, 36(9): 1440-1460. |
[15] | Zifei Yuan, Zhankun Gao, Bo-Qing Xu. Acid-base property of the supporting material controls the selectivity of Au catalyst for glycerol oxidation in base-free water [J]. Chinese Journal of Catalysis, 2015, 36(9): 1543-1551. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||