Chinese Journal of Catalysis ›› 2025, Vol. 73: 368-383.DOI: 10.1016/S1872-2067(25)64683-3
• Article • Previous Articles
Haneul Shima,1, Sumin Pyob,1, Avnish Kumara, Yasin Khania, Siyoung Q. Choib, Kanghee Choc, Jechan Leed, Young-Kwon Parka()
Received:
2025-01-07
Accepted:
2025-03-21
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: catalica@uos.ac.kr (Y.-K. Park).
About author:
1 Contributed equally to this work.
Haneul Shim, Sumin Pyo, Avnish Kumar, Yasin Khani, Siyoung Q. Choi, Kanghee Cho, Jechan Lee, Young-Kwon Park. Improvement in the production of aromatics from pyrolysis of plastic waste over Ga-modified ZSM-5 catalyst under C1-gas environment[J]. Chinese Journal of Catalysis, 2025, 73: 368-383.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64683-3
Sample | SBET (m2/g) | SMicro (m2/g) | SExternal (m2/g) | Pore volume (cm3/g) | Micropore volume (cm3/g) |
---|---|---|---|---|---|
HZ | 410 | 375 | 35 | 0.32 | 0.177 |
GHZ(1) | 389 | 350 | 39 | 0.31 | 0.165 |
RO-GHZ(1) | 406 | 371 | 35 | 0.32 | 0.176 |
RO-GHZ(3) | 403 | 363 | 40 | 0.34 | 0.171 |
RO-GHZ(5) | 383 | 350 | 33 | 0.31 | 0.161 |
Table 1 N2 sorption analysis of catalysts.
Sample | SBET (m2/g) | SMicro (m2/g) | SExternal (m2/g) | Pore volume (cm3/g) | Micropore volume (cm3/g) |
---|---|---|---|---|---|
HZ | 410 | 375 | 35 | 0.32 | 0.177 |
GHZ(1) | 389 | 350 | 39 | 0.31 | 0.165 |
RO-GHZ(1) | 406 | 371 | 35 | 0.32 | 0.176 |
RO-GHZ(3) | 403 | 363 | 40 | 0.34 | 0.171 |
RO-GHZ(5) | 383 | 350 | 33 | 0.31 | 0.161 |
Catalyst | Acidity (mmol/g) | ||
---|---|---|---|
Weak and medium | Strong | Total | |
HZ | 0.67 | 0.308 | 0.978 |
GHZ(1) | 0.673 | 0.23 | 0.903 |
RO-GHZ(1) | 0.692 | 0.269 | 0.961 |
RO-GHZ(3) | 0.707 | 0.241 | 0.948 |
RO-GHZ(5) | 0.72 | 0.209 | 0.929 |
Table 2 The amount of weak-medium and strong acid sites of HZ, GHZ(1) and RO-GHZ(x).
Catalyst | Acidity (mmol/g) | ||
---|---|---|---|
Weak and medium | Strong | Total | |
HZ | 0.67 | 0.308 | 0.978 |
GHZ(1) | 0.673 | 0.23 | 0.903 |
RO-GHZ(1) | 0.692 | 0.269 | 0.961 |
RO-GHZ(3) | 0.707 | 0.241 | 0.948 |
RO-GHZ(5) | 0.72 | 0.209 | 0.929 |
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | RO-GHZ(3) | RO-GHZ(5) |
---|---|---|---|---|---|
Lewis/ Brönsted | 0.489 | 0.648 | 0.687 | 0.745 | 0.764 |
Table 3 The ratio of Lewis acid sites to Br?nsted acid sites over the catalysts at 300 °C.
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | RO-GHZ(3) | RO-GHZ(5) |
---|---|---|---|---|---|
Lewis/ Brönsted | 0.489 | 0.648 | 0.687 | 0.745 | 0.764 |
Fig. 8. TEM, STEM, and EDS mapping images of HZ (a), GHZ(1) (b), R-GHZ(1) (c), RO-GHZ(1) (d), RO-GHZ(3) (e), and RO-GHZ(5) (f) catalysts. TEM and STEM images were taken with a Titan ETEM G2 instrument at 300 kV, and EDS analysis was carried out with Octane-T-Pluss II.
Catalysts | N2 | CH4 | Biogas | CO2 |
---|---|---|---|---|
HZ | 0.443 | 0.547 | 0.383 | - |
GHZ(1) | 0.415 | 0.455 | 0.375 | 0.414 |
RO-GHZ(1) | 0.439 | 0.576 | 0.383 | 0.381 |
Table 4 Coke detection present in spent HZ, GHZ(1), and RO-GHZ(1) catalysts in various environments (wt%).
Catalysts | N2 | CH4 | Biogas | CO2 |
---|---|---|---|---|
HZ | 0.443 | 0.547 | 0.383 | - |
GHZ(1) | 0.415 | 0.455 | 0.375 | 0.414 |
RO-GHZ(1) | 0.439 | 0.576 | 0.383 | 0.381 |
HZ (Vol%) | GHZ(1) (Vol%) | RO-GHZ(1) ( Vol%) | RO-GHZ(3) ( Vol%) | RO-GHZ(5) ( Vol%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | CH4 | BG | N2 | CH4 | BG | CO2 | N2 | CH4 | BG | CO2 | CH4 | BG | CH4 | BG | |||||
H2 | 8.0 | 8.0 | 4.7 | 26.4 | 15.0 | 17.2 | 22.5 | 21.8 | 30.7 | 21.9 | 14.9 | 25.9 | 21.0 | 26.9 | 20.1 | ||||
CO | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.8 | 1.7 | 0.0 | 0.7 | 1.7 | 1.2 | 0.4 | 1.7 | 0.2 | 1.2 | ||||
CH4 | 8.6 | 22.7 | 19.2 | 7.4 | 20.7 | 18.2 | 7.6 | 6.8 | 20.9 | 19.5 | 4.5 | 23.4 | 19.6 | 23.2 | 20.4 | ||||
CO2 | 0.0 | 0.0 | 9.1 | 0.0 | 0.0 | 7.4 | 22.6 | 0.0 | 0.0 | 7.5 | 31.2 | 0.0 | 8.7 | 0.0 | 9.7 | ||||
Ethane | 7.3 | 6.8 | 4.5 | 4.9 | 3.3 | 4.1 | 4.3 | 4.4 | 4.6 | 3.7 | 2.5 | 4.0 | 3.0 | 3.6 | 2.9 | ||||
Ethene | 14.6 | 11.0 | 8.9 | 10.3 | 8.7 | 7.3 | 7.4 | 8.7 | 8.3 | 6.9 | 5.8 | 7.8 | 6.2 | 7.5 | 6.3 | ||||
Propane | 23.3 | 21.3 | 20.1 | 13.2 | 12.1 | 14.7 | 11.1 | 15.6 | 11.1 | 11.2 | 9.9 | 8.3 | 8.0 | 8.1 | 6.6 | ||||
Propene | 17.7 | 12.8 | 12.4 | 15.8 | 15.3 | 11.1 | 9.6 | 15.2 | 10.1 | 10.1 | 11.0 | 12.6 | 11.9 | 11.9 | 12.8 | ||||
Isobutane | 5.6 | 4.9 | 7.0 | 5.5 | 7.4 | 6.4 | 3.5 | 9.1 | 3.6 | 5.0 | 5.8 | 4.1 | 5.0 | 5.1 | 4.7 | ||||
Butane | 3.5 | 3.0 | 3.6 | 3.0 | 3.4 | 3.3 | 2.1 | 4.0 | 2.2 | 2.6 | 2.6 | 2.1 | 2.3 | 2.4 | 2.0 | ||||
t-2-butene | 1.7 | 1.3 | 1.4 | 1.8 | 2.0 | 1.3 | 1.0 | 2.0 | 0.9 | 1.2 | 1.4 | 1.6 | 1.8 | 1.5 | 1.9 | ||||
1-butene | 1.4 | 1.1 | 1.1 | 1.5 | 1.6 | 1.0 | 0.8 | 1.5 | 0.8 | 1.0 | 1.1 | 1.2 | 1.3 | 1.2 | 1.4 | ||||
isobutylene | 3.2 | 2.5 | 2.8 | 3.6 | 4.1 | 2.5 | 1.9 | 4.1 | 1.9 | 2.7 | 3.2 | 3.4 | 3.8 | 3.1 | 4.1 | ||||
c-2-butene | 1.2 | 0.9 | 1.0 | 1.3 | 1.4 | 0.9 | 0.7 | 1.4 | 0.7 | 0.9 | 1.0 | 1.1 | 1.2 | 1.0 | 1.3 | ||||
>C5 | 3.9 | 3.7 | 3.8 | 5.3 | 5.0 | 3.7 | 3.4 | 5.5 | 3.6 | 4.1 | 3.8 | 4.2 | 4.4 | 4.3 | 4.5 | ||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Table 5 Gas composition obtained from pyrolysis of PP over different catalysts.
HZ (Vol%) | GHZ(1) (Vol%) | RO-GHZ(1) ( Vol%) | RO-GHZ(3) ( Vol%) | RO-GHZ(5) ( Vol%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | CH4 | BG | N2 | CH4 | BG | CO2 | N2 | CH4 | BG | CO2 | CH4 | BG | CH4 | BG | |||||
H2 | 8.0 | 8.0 | 4.7 | 26.4 | 15.0 | 17.2 | 22.5 | 21.8 | 30.7 | 21.9 | 14.9 | 25.9 | 21.0 | 26.9 | 20.1 | ||||
CO | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.8 | 1.7 | 0.0 | 0.7 | 1.7 | 1.2 | 0.4 | 1.7 | 0.2 | 1.2 | ||||
CH4 | 8.6 | 22.7 | 19.2 | 7.4 | 20.7 | 18.2 | 7.6 | 6.8 | 20.9 | 19.5 | 4.5 | 23.4 | 19.6 | 23.2 | 20.4 | ||||
CO2 | 0.0 | 0.0 | 9.1 | 0.0 | 0.0 | 7.4 | 22.6 | 0.0 | 0.0 | 7.5 | 31.2 | 0.0 | 8.7 | 0.0 | 9.7 | ||||
Ethane | 7.3 | 6.8 | 4.5 | 4.9 | 3.3 | 4.1 | 4.3 | 4.4 | 4.6 | 3.7 | 2.5 | 4.0 | 3.0 | 3.6 | 2.9 | ||||
Ethene | 14.6 | 11.0 | 8.9 | 10.3 | 8.7 | 7.3 | 7.4 | 8.7 | 8.3 | 6.9 | 5.8 | 7.8 | 6.2 | 7.5 | 6.3 | ||||
Propane | 23.3 | 21.3 | 20.1 | 13.2 | 12.1 | 14.7 | 11.1 | 15.6 | 11.1 | 11.2 | 9.9 | 8.3 | 8.0 | 8.1 | 6.6 | ||||
Propene | 17.7 | 12.8 | 12.4 | 15.8 | 15.3 | 11.1 | 9.6 | 15.2 | 10.1 | 10.1 | 11.0 | 12.6 | 11.9 | 11.9 | 12.8 | ||||
Isobutane | 5.6 | 4.9 | 7.0 | 5.5 | 7.4 | 6.4 | 3.5 | 9.1 | 3.6 | 5.0 | 5.8 | 4.1 | 5.0 | 5.1 | 4.7 | ||||
Butane | 3.5 | 3.0 | 3.6 | 3.0 | 3.4 | 3.3 | 2.1 | 4.0 | 2.2 | 2.6 | 2.6 | 2.1 | 2.3 | 2.4 | 2.0 | ||||
t-2-butene | 1.7 | 1.3 | 1.4 | 1.8 | 2.0 | 1.3 | 1.0 | 2.0 | 0.9 | 1.2 | 1.4 | 1.6 | 1.8 | 1.5 | 1.9 | ||||
1-butene | 1.4 | 1.1 | 1.1 | 1.5 | 1.6 | 1.0 | 0.8 | 1.5 | 0.8 | 1.0 | 1.1 | 1.2 | 1.3 | 1.2 | 1.4 | ||||
isobutylene | 3.2 | 2.5 | 2.8 | 3.6 | 4.1 | 2.5 | 1.9 | 4.1 | 1.9 | 2.7 | 3.2 | 3.4 | 3.8 | 3.1 | 4.1 | ||||
c-2-butene | 1.2 | 0.9 | 1.0 | 1.3 | 1.4 | 0.9 | 0.7 | 1.4 | 0.7 | 0.9 | 1.0 | 1.1 | 1.2 | 1.0 | 1.3 | ||||
>C5 | 3.9 | 3.7 | 3.8 | 5.3 | 5.0 | 3.7 | 3.4 | 5.5 | 3.6 | 4.1 | 3.8 | 4.2 | 4.4 | 4.3 | 4.5 | ||||
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atmosphere | N2 | CH4 | Biogas | N2 | CH4 | Biogas | N2 | CH4 | Biogas | ||
C2H4/C2H6 | 1.99 | 1.61 | 1.98 | 2.09 | 2.64 | 1.80 | 1.96 | 1.80 | 1.85 | ||
C3H6/C3H8 | 0.76 | 0.60 | 0.62 | 1.20 | 1.26 | 0.75 | 0.97 | 0.91 | 0.90 |
Table 6 Light olefin/paraffin ratio obtained from pyrolysis of PP over HZ, GHZ(1) and RO-GHZ(1).
Catalyst | HZ | GHZ(1) | RO-GHZ(1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Atmosphere | N2 | CH4 | Biogas | N2 | CH4 | Biogas | N2 | CH4 | Biogas | ||
C2H4/C2H6 | 1.99 | 1.61 | 1.98 | 2.09 | 2.64 | 1.80 | 1.96 | 1.80 | 1.85 | ||
C3H6/C3H8 | 0.76 | 0.60 | 0.62 | 1.20 | 1.26 | 0.75 | 0.97 | 0.91 | 0.90 |
|
[1] | Peipei Xiao, Yong Wang, Xiaomin Tang, Anmin Zheng, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Dirk De Vos, Xiangju Meng, Feng-Shou Xiao, Hermann Gies, Toshiyuki Yokoi. Isomers of organic structure directing agent influence the Al distribution of AEI zeolite and catalytic performance in methane oxidation [J]. Chinese Journal of Catalysis, 2025, 73(6): 252-260. |
[2] | Yihan Zheng, Yuxin Wang, Ruitao Li, Haoran Yang, Yuanyuan Dai, Qiang Niu, Tiejun Lin, Kun Gong, Liangshu Zhong. CO2-free hydrogen production from solar-driven photothermal catalytic decomposition of methane [J]. Chinese Journal of Catalysis, 2025, 73(6): 289-299. |
[3] | Jangeon Roh, Kihun Nam, Yong Hyun Lim, Yeseul Hwang, Hae Won Ryu, Kyoungmin Kim, Gyeongmin Seok, Yangho Jeong, Jong Hun Kang, Jungyeop Lee, Jong-Ki Jeon, Do Heui Kim. Promotional effect of silica shell coated NiO physically mixed with Mo/HZSM-5 catalyst on methane dehydroaromatization [J]. Chinese Journal of Catalysis, 2025, 71(4): 220-233. |
[4] | Wenbing Yu, Xiaoqin Si, Mengjie Li, Zhenggang Liu, Rui Lu, Fang Lu. Catalytic conversion of biomass waste to methane without external hydrogen source [J]. Chinese Journal of Catalysis, 2025, 71(4): 246-255. |
[5] | Yu Huang, Lei Zou, Yuan-Biao Huang, Rong Cao. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of methane to alcohol [J]. Chinese Journal of Catalysis, 2025, 70(3): 207-229. |
[6] | Huimei Duan, Xiaofei Li, Chuanhui Wang, Congyun Zhang, Kaiwen Yu, Lei Chen, Yunshang Zhang, Jiabin Ji, Xianfeng Yang, Dongjiang Yang. TiO2-facet-dependent effect on methane combustion over Ir/TiO2 catalysts [J]. Chinese Journal of Catalysis, 2025, 70(3): 378-387. |
[7] | Dezheng Li, Huimin Liu, Xuewen Xiao, Manqi Zhao, Dehua He, Yiming Lei. Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2025, 70(3): 399-409. |
[8] | Mayra Alejandra Suarez, Laura Santamaria, Gartzen Lopez, Enara Fernandez, Martin Olazar, Maider Amutio, Maite Artetxe. Oxidative steam reforming of HDPE pyrolysis volatiles on Ni catalysts: Effect of the support (Al2O3, ZrO2, SiO2) and promoter (CeO2, La2O3) on the catalyst performance [J]. Chinese Journal of Catalysis, 2025, 69(2): 149-162. |
[9] | Yunha Hwang, Dong-Heon Lee, Seung Jae Lee. Orchestration of diverse components in soluble methane monooxygenase for methane hydroxylation [J]. Chinese Journal of Catalysis, 2025, 68(1): 204-212. |
[10] | Shaolei Gao, Peng Lu, Liang Qi, Yingli Wang, Hua Li, Mao Ye, Valentin Valtchev, Alexis T. Bell, Zhongmin Liu. Dimethoxymethane carbonylation and disproportionation over extra-large pore zeolite ZEO-1: Reaction network and mechanism [J]. Chinese Journal of Catalysis, 2025, 68(1): 230-245. |
[11] | Hao Dai, Tao Song, Xian Yue, Shuting Wei, Fuzhi Li, Yanchao Xu, Siyan Shu, Ziang Cui, Cheng Wang, Jun Gu, Lele Duan. Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4 [J]. Chinese Journal of Catalysis, 2024, 64(9): 123-132. |
[12] | Yuanlong Tan, Yafeng Zhang, Ya Gao, Jingyuan Ma, Han Zhao, Qingqing Gu, Yang Su, Xiaoyan Xu, Aiqin Wang, Bing Yang, Guo-Xu Zhang, Xiao Yan Liu, Tao Zhang. Redox-driven surface generation of highly active Pd/PdO interface boosting low-temperature methane combustion [J]. Chinese Journal of Catalysis, 2024, 60(5): 242-252. |
[13] | Hantao Gong, Caihao Deng, Peipei He, Mingjie Liu, Yiliang Cai, Yiwen Yang, Qiwei Yang, Zongbi Bao, Qilong Ren, Siyu Yao, Zhiguo Zhang. Selective photooxidation of methane to C1 oxygenates by constructing heterojunction photocatalyst with mild oxidation ability [J]. Chinese Journal of Catalysis, 2024, 67(12): 61-70. |
[14] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
[15] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||