Chinese Journal of Catalysis ›› 2025, Vol. 74: 294-307.DOI: 10.1016/S1872-2067(25)64690-0
• Articles • Previous Articles Next Articles
Received:
2025-02-08
Accepted:
2025-03-10
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: Supported by:
Zhengyu Zhou, Zhiliang Jin. Custom exposed crystal facets: Synergistic effect of optimum crystal facet anisotropy and Ohmic heterojunction boosting photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis, 2025, 74: 294-307.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64690-0
Fig. 2. (a,b) SEM images of CZS. (c-h) SEM images of HCO, NCO, CCO, HCOCZS20, NCOCZS20, CCOCZS20. (i-k) Element maps of HCOCZS20, NCOCZS20, CCOCZS20. (l,m) TEM and HRTEM images of HCOCZS20. (n-p) Measurement of lattice spacing. (q) SAED of HCOCZS20.
Materials | Lifetime, τ (ns) | Rel (%) | <τ> (ns) | χ2 |
---|---|---|---|---|
CZS | τ1 = 0.35 τ2 = 1.89 τ3 = 10.92 | A1 = 55.86 A2 = 36.28 A3 = 7.86 | 0.56 | 1.45 |
HCOCZS20 | τ1 = 1.72 τ2 = 9.68 τ3 = 0.29 | A1 = 36.63 A2 = 9.40 A3 = 53.97 | 0.49 | 1.27 |
NCOCZS20 | τ1 =0.29 τ2 = 1.71 τ3 = 9.51 | A1 = 53.33 A2 = 37.77 A3 = 8.90 | 0.48 | 1.32 |
CCOCZS20 | τ1 =1.85 τ2 = 0.33 τ3 = 11.26 | A1 = 36.11 A2 = 55.65 A3 = 8.24 | 0.53 | 1.32 |
Table 1 Attenuation parameters of CZS, HCOCZS20, NCOCZS20 and CCOCZS20.
Materials | Lifetime, τ (ns) | Rel (%) | <τ> (ns) | χ2 |
---|---|---|---|---|
CZS | τ1 = 0.35 τ2 = 1.89 τ3 = 10.92 | A1 = 55.86 A2 = 36.28 A3 = 7.86 | 0.56 | 1.45 |
HCOCZS20 | τ1 = 1.72 τ2 = 9.68 τ3 = 0.29 | A1 = 36.63 A2 = 9.40 A3 = 53.97 | 0.49 | 1.27 |
NCOCZS20 | τ1 =0.29 τ2 = 1.71 τ3 = 9.51 | A1 = 53.33 A2 = 37.77 A3 = 8.90 | 0.48 | 1.32 |
CCOCZS20 | τ1 =1.85 τ2 = 0.33 τ3 = 11.26 | A1 = 36.11 A2 = 55.65 A3 = 8.24 | 0.53 | 1.32 |
Fig. 5. (a) Hydrogen production of HCO, CZS and HCOCZSX in 5 h. (b) Hydrogen production of NCO, CZS and NCOCZSX in 5 h. (c) Hydrogen production of CCO, CZS and CCOCZSX in 5 h. (d) Hydrogen production of HCOCZS20, NCOCZS20 and CCOCZS20. (e) Cycle stability test of HCOCZS20. (f) AQE of HCOCZS20.
Photocatalyst | Optical source | Sacrificial reagent | Hydrogen production | Ref. |
---|---|---|---|---|
HCOCZS20 | LED 10 W | lactic acid | 18.03 mmol/(g·h) | This work |
Zn0.4Cd0.6S-0/MC | Xenon lamp 300 W | — | 12.2 mmol/(g·h) | [ |
5CHCZS | Xenon lamp 300 W | Na2S/Na2SO3 | 5.34 mmol/(g·h) | [ |
Zn0.5Cd0.5S-STA-Ni | Mercury lamp 500W | lactic acid | 1.06 mmol/(g·h) | [ |
CZS-Solvothermal method) | Xenon lamp 300 W | lactic acid | 12.15 mmol/(g·h) | [ |
CZS/CMS-10 | Xenon lamp 300 W | Na2S/Na2SO3 | 13.1 mmol/(g·h) | [ |
FMZCS | Xenon lamp 300 W | Na2S/Na2SO3 | 19.08 mmol/(g·h) | [ |
ZnCdS@ZnInS/MoS | Xenon lamp 300 W | TEOA | 8.50 mmol/(g·h) | [ |
Zn0.5Cd0.5S/CoP-3 | Xenon lamp 300 W | — | 9.26 mmol/(g·h) | [ |
Table 2 Comparison of hydrogen production of other CZS-based photocatalysts.
Photocatalyst | Optical source | Sacrificial reagent | Hydrogen production | Ref. |
---|---|---|---|---|
HCOCZS20 | LED 10 W | lactic acid | 18.03 mmol/(g·h) | This work |
Zn0.4Cd0.6S-0/MC | Xenon lamp 300 W | — | 12.2 mmol/(g·h) | [ |
5CHCZS | Xenon lamp 300 W | Na2S/Na2SO3 | 5.34 mmol/(g·h) | [ |
Zn0.5Cd0.5S-STA-Ni | Mercury lamp 500W | lactic acid | 1.06 mmol/(g·h) | [ |
CZS-Solvothermal method) | Xenon lamp 300 W | lactic acid | 12.15 mmol/(g·h) | [ |
CZS/CMS-10 | Xenon lamp 300 W | Na2S/Na2SO3 | 13.1 mmol/(g·h) | [ |
FMZCS | Xenon lamp 300 W | Na2S/Na2SO3 | 19.08 mmol/(g·h) | [ |
ZnCdS@ZnInS/MoS | Xenon lamp 300 W | TEOA | 8.50 mmol/(g·h) | [ |
Zn0.5Cd0.5S/CoP-3 | Xenon lamp 300 W | — | 9.26 mmol/(g·h) | [ |
Fig. 7. (a-d) Φ of HCO, NCO, CCO, and CZS. (e-g) The (111), (110), and (001) crystal facet of CO. (h) Charge density distribution curve and charge density difference map (Blue signifies electron accumulation, while yellow indicates electron depletion). (i) Total state density of HCOCZS20, NCOCZS20 and CCOCZS20. (j-k) D-band centers of Zn and Cd. (l) ΔGH* of different materials.
Es (eV) | Eb (eV) | As (Å2) | n | Ei (eV/Å2) | Lattice plane |
---|---|---|---|---|---|
-3.90E+04 | -9.75E+03 | 61.82 | 4 | 1.02E-01 | (0 0 1) |
-3.90E+04 | -9.75E+03 | 92.71 | 4 | 1.11E-01 | (1 1 0) |
-7.79E+04 | -9.75E+03 | 240.77 | 8 | 1.45E-01 | (1 1 1) |
Table 3 Es, Eb, As, n, and Ei of (001), (110), and (111) lattice plane.
Es (eV) | Eb (eV) | As (Å2) | n | Ei (eV/Å2) | Lattice plane |
---|---|---|---|---|---|
-3.90E+04 | -9.75E+03 | 61.82 | 4 | 1.02E-01 | (0 0 1) |
-3.90E+04 | -9.75E+03 | 92.71 | 4 | 1.11E-01 | (1 1 0) |
-7.79E+04 | -9.75E+03 | 240.77 | 8 | 1.45E-01 | (1 1 1) |
Fig. 9. Transient absorption spectra of HCOCZS20 (a,d), NCOCZS20 (b,e), and CCOCZS20 (c,f). Corresponding fitted GSB recovery kinetics of HCOCZS20 (g), NCOCZS20 (h), and CCOCZS20 (i) at 470 nm.
|
[1] | Yunchao Zhang, Jinkang Pan, Xiang Ni, Feiqi Mo, Yuanguo Xu, Pengyu Dong. Revealing the dynamics of charge carriers in organic/inorganic hybrid FS-COF/WO3 S-scheme heterojunction for boosted photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 250-263. |
[2] | Xinlong Zheng, Yiming Song, Chongtai Wang, Qizhi Gao, Zhongyun Shao, Jiaxin Lin, Jiadi Zhai, Jing Li, Xiaodong Shi, Daoxiong Wu, Weifeng Liu, Wei Huang, Qi Chen, Xinlong Tian, Yuhao Liu. Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 22-70. |
[3] | Xianglin Xiang, Bei Cheng, Bicheng Zhu, Chuanjia Jiang, Guijie Liang. High-entropy alloy nanocrystals boosting photocatalytic hydrogen evolution coupled with selective oxidation of cinnamyl alcohol [J]. Chinese Journal of Catalysis, 2025, 68(1): 326-335. |
[4] | Junxian Bai, Rongchen Shen, Guijie Liang, Chaochao Qin, Difa Xu, Haobin Hu, Xin Li. Topology-induced local electric polarization in 2D thiophene-based covalent organic frameworks for boosting photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 225-236. |
[5] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[6] | Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 157-167. |
[7] | Ming Wang, Yaling Li, Dengxin Yan, Hui Hu, Yujie Song, Xiaofang Su, Jiamin Sun, Songtao Xiao, Yanan Gao. Dipole polarization modulating of vinylene-linked covalent organic frameworks for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 65(10): 103-112. |
[8] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[9] | Yang Lei, Jian-Feng Huang, Xin-Ao Li, Chu-Ying Lv, Chao-Ping Hou, Jun-Min Liu. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(8): 2249-2258. |
[10] | Zhiliang Jin, Hongying Li, Junke Li. Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction [J]. Chinese Journal of Catalysis, 2022, 43(2): 303-315. |
[11] | Chao Ding, Chengxiao Zhao, Shi Cheng, Xiaofei Yang. Ultrahigh photocatalytic hydrogen evolution performance of coupled 1D CdS/1T-phase dominated 2D WS2 nanoheterojunctions [J]. Chinese Journal of Catalysis, 2022, 43(2): 403-409. |
[12] | Liang Jian, Huizhen Zhang, Bing Liu, Chengsi Pan, Yuming Dong, Guangli Wang, Jun Zhong, Yongjie Zheng, Yongfa Zhu. Monodisperse Ni-clusters anchored on carbon nitride for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(2): 536-545. |
[13] | Jinmao Li, Congcong Wu, Jin Li, Binghai Dong, Li Zhao, Shimin Wang. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution [J]. Chinese Journal of Catalysis, 2022, 43(2): 339-349. |
[14] | Junxian Bai, Rongchen Shen, Zhimin Jiang, Peng Zhang, Youji Li, Xin Li. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2022, 43(2): 359-369. |
[15] | Pengyu Dong, Aicaijun Zhang, Ting Cheng, Jinkang Pan, Jun Song, Lei Zhang, Rongfeng Guan, Xinguo Xi, Jinlong Zhang. 2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2022, 43(10): 2592-2605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||