Chinese Journal of Catalysis ›› 2025, Vol. 77: 99-109.DOI: 10.1016/S1872-2067(25)64775-9
• Articles • Previous Articles Next Articles
Feiyang Zhanga,b,1, Yanjun Chena,b,1, Mengyao Suna,b, Peng Wangb, Yuxin Miaob, Zhongyang Zhengb, Shixin Liub,*(), Xuehua Yub, Zhen Zhaoa,b,*(
)
Received:
2025-05-03
Accepted:
2025-06-24
Online:
2025-10-18
Published:
2025-10-05
Contact:
*E-mail: liushixin2008@126.com (S. Liu), zhenzhao@cup.edu.cn, zhaozhen1586@163.com (Z. Zhao).
About author:
1Contributed equally to this work.
Supported by:
Feiyang Zhang, Yanjun Chen, Mengyao Sun, Peng Wang, Yuxin Miao, Zhongyang Zheng, Shixin Liu, Xuehua Yu, Zhen Zhao. Non-thermal plasma to boost lattice oxygen activation in Ce1-xCoxO2-δ catalysts for efficient soot combustion at low temperatures[J]. Chinese Journal of Catalysis, 2025, 77: 99-109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64775-9
Fig. 1. (a) XRD patterns of Ce1-xCoxO2-δ catalysts. (b) Magnified XRD patterns of Ce1-xCoxO2-δ catalysts in the range from 27° to 30°. (c) Raman spectra of Ce1-xCoxO2-δ catalysts. (d) HRTEM images of Ce0.8Co0.2O2-δ catalyst. (e) HRTEM images of Ce0.6Co0.4O2-δ catalyst. (f) O2-TPD profiles of Ce1-xCoxO2-δ catalysts.
Fig. 2. (a) Time-dependent curves of COx concentrations of NTP-Ce1-xCoxO2-δ (x = 0, 0.2, and 1). (b) XC of NTP-Blank and NTP-Ce1-xCoxO2-δ (x = 0, 0.2, 0.4, and 1) as a function of reaction time. (c) XC and S(CO2) of NTP-Blank and NTP-Ce1-xCoxO2-δ/-HCl. (d) The stability of Ce0.8Co0.2O2-δ catalyst. (e) Emax of the NTP-Ce1-xCoxO2-δ (200 °C, Pin = 13 W and 10% O2/N2). (f) Water resistance of Ce1-xCoxO2-δ (x = 0.1-0.4) catalysts (200 °C, Pin = 13 W and 10% O2/10% H2O/N2). (g) Effect of NO concentration (Pin = 13 W and 150 °C) on the catalytic activity of Ce0.8Co0.2O2-δ catalyst. (h) Effect of Pdis (without heating and 10% O2/N2) and reaction temperature (Pin = 13 W and 10% O2/N2) on the catalytic activity of Ce0.8Co0.2O2-δ catalyst. (i) XRD patterns of Ce1-xCoxO2-δ/-HCl (x = 0.2, 0.4).
Fig. 3. (a-c) Isothermal plasma isotope exchange reactions on Ce1-xCoxO2-δ (x = 0, 0.2 and 1) catalysts without soot (a) and with soot (b,c) (Pin = 13 W). (d) XRD patterns of Ce1-xCoxO2-δ, Ce1-xCoxO2-δ-R and Ce1-xCoxO2-δ-S catalysts (x = 0 and 0.2). (e) Raman spectra of Ce1-xCoxO2-δ, Ce1-xCoxO2-δ-R and Ce1-xCoxO2-δ-S catalysts (x = 0 and 0.2). (f) Ce 3d XPS spectra of Ce0.8Co0.2O2-δ, Ce0.8Co0.2O2-δ-R and Ce0.8Co0.2O2-δ-S catalysts (Ce3+: Ce3+/(Ce3+ + Ce4+) × 100). (Ce1-xCoxO2-δ-R and Ce1-xCoxO2-δ-S are the used catalysts in soot combustion by NTP-catalyst without gas-phase oxygen and regenerated by NTP in 10% O2/N2 flow, respectively.)
Fig. 4. Structural configurations of CeO2 (a), Co-CeO2 (b), CeO2-Vo (c), and Co-CeO2-Vo (d). Energy of formation of the second Vo by the direct (e) and migration (f) removal processes. (g) Energy profiles of the O2 supplement for CeO2 and Co-CeO2. Electron localization function (ELF) maps of CeO2 (h) and Co-CeO2 (i). Projected crystal orbital Hamilton populations (pCOHP) for CeO2 (j) and Co-CeO2 (k) (red, yellow, and blue balls represent O, Ce, and Co atoms, respectively). (l) Synergistic catalytic mechanism of the NTP-Ce1-xCoxO2-δ hybrid for soot oxidation.
|
[1] | Yang Chen, Yu Tang, Leiyun Han, Jiayan Liu, Yingjie Hua, Xudong Zhao, Xiaoyang Liu. Dual-shell hollow nanospheres NiCo2S4@CoS2/MoS2: Enhancing catalytic activity for oxygen evolution reaction and achieving water splitting via the unique synergistic effects of mechanisms of adsorption-desorption and lattice oxygen oxidation [J]. Chinese Journal of Catalysis, 2025, 74(7): 394-410. |
[2] | Jiangyu Tang, Xiao Wang, Yunfa Wang, Min Shi, Peng Huo, Jianxiang Wu, Qiaoxia Li, Qunjie Xu. Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe2O4 achieving efficient and stable water oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 164-175. |
[3] | Pengxiang Zhang, Jiawen Wang, Tianyu Yang, Ruizhe Wang, Ruofan Shen, Zhikun Peng, Yanyan Liu, Xianli Wu, Jianchun Jiang, Baojun Li. Unveiling complexities: Reviews on insights into the mechanism of oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2025, 72(5): 48-83. |
[4] | Mingxing Chen, Zihe Du, Nian Liu, Huijie Li, Jing Qi, Enbo Shangguan, Jing Li, Jiahao Cao, Shujiao Yang, Wei Zhang, Rui Cao. Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution [J]. Chinese Journal of Catalysis, 2025, 69(2): 282-291. |
[5] | Xiaoning Zhan, Yucheng Jin, Bin Han, Ziwen Zhou, Baotong Chen, Xu Ding, Fushun Li, Zhiru Suo, Rong Jiang, Dongdong Qi, Kang Wang, Jianzhuang Jiang. 2D Phthalocyanine-based covalent organic frameworks for infrared light-mediated photocatalysis [J]. Chinese Journal of Catalysis, 2025, 69(2): 271-281. |
[6] | Meiyun Zhang, Penghua Che, Hong Ma, Xin Liu, Shujing Zhang, Yang Luo, Jie Xu. Dual-metal synergy unlocking ROS-free catalysis for rapid aerobic oxidation of 5-hydroxymethylfurfural at room temperature [J]. Chinese Journal of Catalysis, 2024, 67(12): 144-156. |
[7] | Chao Li, Chenjie Song, Hui Li, Liqun Ye, Yixue Xu, Yingping Huang, Gongzhe Nie, Rumeng Zhang, Wei Liu, Niu Huang, Po Keung Wong, Tianyi Ma. Ultradurable fluorinated V2AlC for peroxymonosulfate activation in organic pollutant degradation processes [J]. Chinese Journal of Catalysis, 2022, 43(7): 1927-1936. |
[8] | Chenxin Chen, Suqi He, Kamran Dastafkan, Zehua Zou, Qingxiang Wang, Chuan Zhao. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis [J]. Chinese Journal of Catalysis, 2022, 43(5): 1267-1276. |
[9] | Xiaohui Feng, Rui Liu, Xianglan Xu, Yunyan Tong, Shijing Zhang, Jiacheng He, Junwei Xu, Xiuzhong Fang, Xiang Wang. Stable CuO/La2Sn2O7 catalysts for soot combustion: Study on the monolayer dispersion behavior of CuO over a La2Sn2O7 pyrochlore support [J]. Chinese Journal of Catalysis, 2021, 42(3): 396-408. |
[10] | Rui Liu, Chunlei Pei, Xianhua Zhang, Sai Chen, Hongfang Li, Liang Zeng, Rentao Mu, Jinlong Gong. Chemical looping partial oxidation over FeWOx/SiO2 catalysts [J]. Chinese Journal of Catalysis, 2020, 41(7): 1140-1151. |
[11] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. Lattice oxygen activation in transition metal doped ceria [J]. Chinese Journal of Catalysis, 2020, 41(6): 977-984. |
[12] | Zhirong Liu, Xin Yu, Linlin Li. Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field [J]. Chinese Journal of Catalysis, 2020, 41(4): 534-549. |
[13] | Haoling Ye, Yiqiu Liu, Si Chen, Haiqiang Wang, Zhen Liu, Zhongbiao Wu. Synergetic effect between non-thermal plasma and photocatalytic oxidation on the degradation of gas-phase toluene: Role of ozone [J]. Chinese Journal of Catalysis, 2019, 40(5): 681-690. |
[14] | Xuelei Mei, Jing Xiong, Yuechang Wei, Chujun Wang, Qiangqiang Wu, Zhen Zhao, Jian Liu. Three-dimensional ordered macroporous perovskite-type La1-xKxNiO3 catalysts with enhanced catalytic activity for soot combustion: the Effect of K-substitution [J]. Chinese Journal of Catalysis, 2019, 40(5): 722-732. |
[15] | Yunyan Wu, Lili Zhang, Yazhou Zhou, Lili Zhang, Yi Li, Qinqin Liu, Juan Hu, Juan Yang. Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species [J]. Chinese Journal of Catalysis, 2019, 40(5): 691-702. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||