Chinese Journal of Catalysis ›› 2025, Vol. 77: 87-98.DOI: 10.1016/S1872-2067(25)64784-X
• Articles • Previous Articles Next Articles
Chen Xua,1, Di Songa,1, Xinggang Liua, Fang Denga,*(), Yongcai Zhangb, Mingshan Zhuc,*(
), Xijun Liud, Jianping Zoua, Xubiao Luoa
Received:
2025-04-27
Accepted:
2025-06-17
Online:
2025-10-18
Published:
2025-10-05
Contact:
*E-mail: dengfang40030@126.com (F. Deng), zhumingshan@jnu.edu.cn (M. Zhu).
About author:
1Contributed equally to this work.
Supported by:
Chen Xu, Di Song, Xinggang Liu, Fang Deng, Yongcai Zhang, Mingshan Zhu, Xijun Liu, Jianping Zou, Xubiao Luo. Quantitative correlation of Fe(III) electronic structure regulation in peroxymonosulfate activation via atomic cobalt doping AgFeO2[J]. Chinese Journal of Catalysis, 2025, 77: 87-98.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64784-X
Fig. 1. (a) Eads and S-O bond lengths of the adsorbed PMS molecules on AgFeO2 and AgFe0.80Co0.20O2 surface. (b) DOS diagrams of AgFeO2 and AgFe0.80Co0.20O2. (c) PDOS for Fe-3d orbitals in AgFeO2 and AgFe0.80Co0.20O2. (d) PDOS of the Fe eg orbital in AgFeO2 and AgFe0.80Co0.20O2. (e) Schematic sketch of the spin-state-dependent PMS activation process.
Fig. 3. XRD patterns (a) and FT-IR spectra (b) of AgFeO2 and AgFe1-xCoxO2. Ag 3d (c), Fe 2p (d), O 1s (e), and Co 2p (f) XPS spectra of AgFeO2 and AgFe0.80Co0.20O2.
Fig. 4. (a) Fe K-edge normalized XANES spectra. (b) FT-EXAFS spectra of AgFeO2, AgFe0.80Co0.20O2 and standard samples. (c) The FT-EXAFS K-space fitting curve of AgFeO2. (d) The FT-EXAFS K-space fitting curve of AgFe1-xCoxO2. (e) EPR spectra of AgFeO2 and AgFe0.80Co0.20O2. (f) Temperature-dependent magnetic susceptibilities of different catalysts. (g) The quantitative changes of μeff,Fe, high spin state, low spin state and eg filling for AgFe1-xCoxO2 with different Co-doping amount. (h) Schematic illustration of strong interaction and eg occupancy of FeOh and CoOh in AgFe0.80Co0.20O2.
Fig. 5. (a) OFL removal efficiency in different AgFe1-xCoxO2/PMS systems. (b) The kobs change with different Co-doping ratio. (c) The TOC removal ratio of OFL solution in AgFe1-xCoxO2/PMS systems with different Co-doping amount. (d) The quantitative correlation of kobs with high spin and low-spin proportion, eg filling and μeff,Fe.
Fig. 6. (a) Quenching experiment of reactive species in AgFe0.80Co0.20O2/PMS. (b) EPR spectra of DMPO-O2?? in AgFeO2/PMS and AgFe0.80Co0.20O2/PMS system. (c) PMS adsorption and consumption in AgFe1-xCoxO2/PMS. (d) Quantitative correlation of PMS adsorption with high spin and low-spin proportion, eg filling and μeff,Fe. (e) Correlation between lnkobs and PMS adsorption quantity. Catalysts: 1 g L-1, C[PMS]: 0.5 mmol L-1, C[MeOH]: 100 mmol L-1, C[BQ] = C[DMSO]: 1 mmol L-1, C[NaN3] = C[IPA] = C[KI]: 10 mmol L-1, C0[OFL]: 15 mg L-1, initial solution pH = 7.0, and T = 25 ± 2 °C.
Fig. 7. (a) I-t curves. (b) LSV curves obtained under different conditions. (c) EIS Nyquist plots in different systems. (d) CV curves of AgFeO2 and AgFe0.80Co0.20O2.
Fig. 8. (a) Influence of various anions on OFL degradation in the AgFe0.80Co0.20O2/PMS system. (b) OFL removal efficiency in different actual water samples. Catalysts: 1 g L-1, C0[OFL]: 15 mg L-1, C[PMS]: 0.5 mmol L-1, and T = 25 ± 2 °C. (c) Consecutive use of AgFe0.80Co0.20O2. (d) Fe 2p XPS spectrum of the recovered AgFe0.80Co0.20O2.
Fig. 9. (a) COD and TOC removal of actual pharmaceutical wastewater by the AgFe0.80Co0.20O2/PMS system. (b) Enhanced biodegradability of pharmaceutical wastewater by the AgFe0.80Co0.20O2/PMS system. (c) The photo of continuous flow reactor. (d) OFL removal by catalyst packed column. catalyst loading = 0.1 g, C0[OFL]: 10 mg L-1, C[PMS]: 0.5 mmol L-1, flow rate = 14 mL h-1).
|
[1] | Shi-Ning Li, Juntao Yao, Shuxin Pang, Jing-Peng Zhang, Shiying Li, Zhicheng Liu, Lu Han, Weibin Fan, Kake Zhu, Yi-An Zhu. Co particles separated by immiscible Ag on yttria-stabilized zirconia as durable methane dry reforming catalyst under pressurized conditions [J]. Chinese Journal of Catalysis, 2025, 74(7): 82-96. |
[2] | Xiaoting Hao, Qi Liu, Yuwei Wang, Xiaoming Zhang, Hengquan Yang. Confining Molecular rhodium phosphine catalysts within liquid-solid hybrid microreactor for olefin hydroformylation [J]. Chinese Journal of Catalysis, 2025, 73(6): 261-270. |
[3] | Ziang Zhao, Miao Jiang, Cunyao Li, Yihui Li, Hejun Zhu, Ronghe Lin, Shenfeng Yuan, Li Yan, Yunjie Ding. Integrated Fischer-Tropsch synthesis and heterogeneous hydroformylation technologies toward high-value commodities from syngas [J]. Chinese Journal of Catalysis, 2025, 73(6): 16-38. |
[4] | Mengyang Xu, Bingqing Chang, Jinze Li, Huiqin Wang, Pengwei Huo. Designed electron transport path via Fe-O-Ni atomic bond for high CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 71(4): 114-127. |
[5] | Chao-an Liang, Bo Zeng, Baolin Feng, Huibing Shi, Fengqi Zhang, Jianhua Liu, Lin He, Yuxiao Ding, Chungu Xia. Heterogeneous Co-based catalytic systems for alkene hydroformylation [J]. Chinese Journal of Catalysis, 2025, 70(3): 115-141. |
[6] | Jiazang Chen. Semiconductor-cocatalyst interfacial electron transfer in actual photocatalytic reaction [J]. Chinese Journal of Catalysis, 2025, 68(1): 213-222. |
[7] | Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives [J]. Chinese Journal of Catalysis, 2025, 68(1): 177-203. |
[8] | Sam Van Minnebruggen, Ka Yan Cheung, Trees De Baerdemaeker, Niels Van Velthoven, Matthias Degelin, Galahad O’Rourke, Hiroto Toyoda, Andree Iemhoff, Imke Muller, Andrei-Nicolae Parvulescu, Torsten Mattke, Jens Ferbitz, Qinming Wu, Feng-Shou Xiao, Toshiyuki Yokoi, Nils Bottke, Dirk De Vos. Isomerization of methylenedianilines using shape-selective zeolites [J]. Chinese Journal of Catalysis, 2024, 62(7): 124-130. |
[9] | Zehui Sun, Zhuangzhuang Lai, Yingying Zhao, Jianfu Chen, Wei Ma. Clarifying sequential electron-transfer steps in single-nanoparticle electrochemical process for identifying the intrinsic activity of electrocatalyst [J]. Chinese Journal of Catalysis, 2024, 60(5): 262-271. |
[10] | Yang Li, Xiong Wang, Xing-Sheng Hu, Biao Hu, Sheng Tian, Bing-Hao Wang, Lang Chen, Guang-Hui Chen, Chao Peng, Sheng Shen, Shuang-Feng Yin. Pd loaded TiO2 as recyclable catalyst for benzophenone synthesis by coupling benzaldehyde with iodobenzene under UV light [J]. Chinese Journal of Catalysis, 2024, 59(4): 159-168. |
[11] | Cheng Cheng, Wei Ren, Hui Zhang, Xiaoguang Duan, Shaobin Wang. Single-atom iron catalysts for peroxymonosulfate-based advanced oxidation processes: Coordination structure versus reactive species [J]. Chinese Journal of Catalysis, 2024, 59(4): 15-37. |
[12] | Junlei Zhang, Wencong Liu, Biao Liu, Xiaoguang Duan, Zhimin Ao, Mingshan Zhu. Is single-atom catalyzed peroxymonosulfate activation better? Coupling with metal oxide may be better [J]. Chinese Journal of Catalysis, 2024, 59(4): 137-148. |
[13] | Yu-Shuai Xu, Hong-Hui Wang, Qi-Yuan Li, Shi-Nan Zhang, Si-Yuan Xia, Dong Xu, Wei-Wei Lei, Jie-Sheng Chen, Xin-Hao Li. Functional ladder-like heterojunctions of Mo2C layers inside carbon sheaths for efficient CO2 fixation [J]. Chinese Journal of Catalysis, 2024, 58(3): 138-145. |
[14] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: Redispersion process and mechanism [J]. Chinese Journal of Catalysis, 2024, 58(3): 237-246. |
[15] | Xiaorui Du, Yike Huang, Xiaoli Pan, Xunzhu Jiang, Yang Su, Jingyi Yang, Yalin Guo, Bing Han, Chengyan Wen, Chenguang Wang, Botao Qiao. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 2: Catalytic performance and reaction mechanism in CO oxidation [J]. Chinese Journal of Catalysis, 2024, 58(3): 247-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||