Chinese Journal of Catalysis ›› 2025, Vol. 78: 242-251.DOI: 10.1016/S1872-2067(25)64823-6
• Articles • Previous Articles Next Articles
Yunzhu Zang, Jiali Ren, Shanna An, Jian Tian(
)
Received:2025-07-24
Accepted:2025-08-27
Online:2025-11-18
Published:2025-10-14
Contact:
*E-mail: jiantian@sdust.edu.cn (J. Tian).
Supported by:Yunzhu Zang, Jiali Ren, Shanna An, Jian Tian. Facile synthesis of medium-entropy metal sulfides as high-efficiency cocatalysts toward photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2025, 78: 242-251.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64823-6
Fig. 1. (a) XRD patterns of HCN, FeS2-HCN, (FeCo)S2-HCN and (FeCoNi)S2-HCN composites. Survey (b), C 1s (c), N 1s (d), Fe 2p (e), Co 2p (f), Ni 2p (g), S 2p (h), and O 1s (i) XPS spectra of (FeCoNi)S2-HCN composites.
Fig. 2. SEM images of HCN (a), FeS2-HCN (b), (FeCo)S2-HCN (c), and (FeCoNi)S2-HCN (d). TEM (e-h) and EDS elemental mapping (i) images of the (FeCoNi)S2-HCN composite.
Fig. 3. (a) UV-vis absorption spectra of HCN, FeS2-HCN, (FeCo)S2-HCN, and (FeCoNi)S2-HCN composites. Band gap value (b), Mott-Schottky plot (c), and schematic diagram (d) of the band structure of HCN.
Fig. 4. Steady-state (a) and time-resolved (b) PL spectra of HCN and (FeCoNi)S2-HCN composites. Transient photocurrent responses (c) and EIS spectra (d) of HCN, FeS2-HCN, (FeCo)S2-HCN, and (FeCoNi)S2-HCN composites.
Fig. 5. Photocatalytic hydrogen evolution activity (a) and corresponding rates (b) of HCN, FeS2-HCN, (FeCo)S2-HCN, and (FeCoNi)S2-HCN composites. (c) Hydrogen evolution rates for (FeCoNi)S2-HCN in this work compared with representative reported photocatalysts.
Fig. 6. Structural model (a), differential charge density (b), and Gibbs free energy (c) in HER of (FeCoNi)S2-HCN. (d) Schematic illustration of the photocatalytic hydrogen evolution mechanism for the (FeCoNi)S2-HCN composite.
|
| [1] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
| [2] | Sikai Wang, Xiang-Ting Min, Botao Qiao, Ning Yan, Tao Zhang. Single-atom catalysts: In search of the holy grails in catalysis [J]. Chinese Journal of Catalysis, 2023, 52(9): 1-13. |
| [3] | Bowen Liu, Jiajie Cai, Jianjun Zhang, Haiyan Tan, Bei Cheng, Jingsan Xu. Simultaneous benzyl alcohol oxidation and H2 generation over MOF/CdS S-scheme photocatalysts and mechanism study [J]. Chinese Journal of Catalysis, 2023, 51(8): 204-215. |
| [4] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
| [5] | Junmin Huang, Jianmin Chen, Wangxi Liu, Jingwen Zhang, Junying Chen, Yingwei Li. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production [J]. Chinese Journal of Catalysis, 2022, 43(3): 782-792. |
| [6] | Huapeng Li, Bin Sun, Tingting Gao, Huan Li, Yongqiang Ren, Guowei Zhou. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production [J]. Chinese Journal of Catalysis, 2022, 43(2): 461-471. |
| [7] | Mathias Smialkowski, David Tetzlaff, Lars Hensgen, Daniel Siegmund, Ulf-Peter Apfel. Fe/Co and Ni/Co-pentlandite type electrocatalysts for the hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2021, 42(8): 1360-1369. |
| [8] | Shipeng Tang, Yang Xia, Jiajie Fan, Bei Cheng, Jiaguo Yu, Wingkei Ho. Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(5): 743-752. |
| [9] | Haotian Xu, Rong Xiao, Jingran Huang, Yan Jiang, Chengxiao Zhao, Xiaofei Yang. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2021, 42(1): 107-114. |
| [10] | Rongchen Shen, Yingna Ding, Shibang Li, Peng Zhang, Quanjun Xiang, Yun Hau Ng, Xin Li. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(1): 25-36. |
| [11] | Nan Xiao, Songsong Li, Xuli Li, Lei Ge, Yangqin Gao, Ning Li. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen [J]. Chinese Journal of Catalysis, 2020, 41(4): 642-671. |
| [12] | Doudou Ren, Rongchen Shen, Zhimin Jiang, Xinyong Lu, Xin Li. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions [J]. Chinese Journal of Catalysis, 2020, 41(1): 31-40. |
| [13] | Rongchen Shen, Jun Xie, Quanjun Xiang, Xiaobo Chen, Jizhou Jiang, Xin Li. Ni-based photocatalytic H2-production cocatalysts [J]. Chinese Journal of Catalysis, 2019, 40(3): 240-288. |
| [14] | Wei Zhang, Hongwen Zhang, Jianzhong Xu, Huaqiang Zhuang, Jinlin Long. 3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production [J]. Chinese Journal of Catalysis, 2019, 40(3): 320-325. |
| [15] | Shelly Kelly, Wharton Sinkler, Lijun Xu, Sergio Sanchez, Cem Akatay, Haiyan Wang, John Qianjun Chen. Advanced characterization for industrial catalysis applications [J]. Chinese Journal of Catalysis, 2019, 40(11): 1637-1654. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||