Chinese Journal of Catalysis ›› 2026, Vol. 82: 74-83.DOI: 10.1016/S1872-2067(25)64853-4
• Articles • Previous Articles Next Articles
Jie Gaoa, Jing Liua,*(
), Mengdi Wanga, Nuo Suna, Hao Hua, Xuejing Cuia, Xin Zhoub,c,*(
), Luhua Jianga,*(
)
Received:2025-07-19
Accepted:2025-09-03
Online:2026-03-18
Published:2026-03-05
Contact:
* E-mail: Supported by:Jie Gao, Jing Liu, Mengdi Wang, Nuo Sun, Hao Hu, Xuejing Cui, Xin Zhou, Luhua Jiang. Alleviating hydroxyl poisoning on Ru through competitive adsorption regulation using anatase-rutile TiO2 heterostructures in alkaline hydrogen oxidation reaction[J]. Chinese Journal of Catalysis, 2026, 82: 74-83.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64853-4
Fig. 1. (a) Schematic diagram of the design strategy of Ru-TiO2. (b) AC HAADF-STEM image of Ru-P25-TiO2. (c) Elemental mapping images of Ru-P25-TiO2. TEM images of Ru-P25-TiO2 (d), Ru-R-TiO2 (e), and Ru-A-TiO2 (f). The insert is the histogram for Ru particle size distribution. (g) AC HRTEM image of Ru-P25-TiO2. g1 and g2 are the enlarged images of the smaller box region. (h) HRTEM image of Ru-R-TiO2. h1 and h2 are the enlarged images of the smaller box region. (i) HRTEM image of Ru-A-TiO2. i1 and i2 are the enlarged images of the smaller box region.
Fig. 2. Chemical state and atomic coordination environment of Ru-P25-TiO2, Ru-A-TiO2, and Ru-R-TiO2. C 1s, Ru 3d (a) and Ti 2p, Ru 3p (b) XPS spectra of Ru-P25-TiO2, Ru-A-TiO2, and Ru-R-TiO2. (c) Valance band XPS spectra of Ru-P25-TiO2, Ru-A-TiO2, and Ru-R-TiO2. Normalized Ru K-edge XANES spectra (d) and Ru K-edge FT-EXAFS spectra (e) of Ru-P25-TiO2, Ru-R-TiO2, Ru foil, and RuO2. (f) The wavelet transform EXAFS contour plots of Ru-P25-TiO2, Ru-R-TiO2, Ru foil, and RuO2. Normalized Ti K-edge XANES spectra (g) and Ti K-edge FT-EXAFS spectra (h) of Ru-P25-TiO2, Ru-R-TiO2, Ti foil, TiO2-A, and TiO2-R.
Fig. 3. Electrocatalytic HOR performances. (a) HOR polarization curves in H2-saturated 0.1 mol L-1 KOH at a scan rate of 10 mV s-1 of Ru-P25-TiO2, Ru-R-TiO2, Ru-A-TiO2, and Ru/C. Tafel plots (b) and comparison of j0,s and jk,m (c) of Ru-P25-TiO2, Ru-R-TiO2, Ru-A-TiO2, and Ru/C. (d) HOR polarization curves of Ru-P25-TiO2 before and after 5k, 10k cycles of ADT. (e) Chronoamperometry curves of Ru-P25-TiO2 and Ru-R-TiO2 at 0.9 V vs. RHE in H2-saturated 0.1 mol L-1 KOH at 400 rpm. (f) Deactivation potentials and mass activities of Ru-based nonprecious metal electrocatalysts for the alkaline HOR.
Fig. 4. In-situ SEIRAS spectra recorded at potentials from 0.35 to -0.05 V of Ru-P25-TiO2 (a,c) and Ru-R-TiO2 (b,d) electrocatalyst in 0.1 mol L-1 NaOH. Deconvolution of the O-H stretching vibration features of in-situ SEIRAS spectra recorded at 0.15 V (e) and 0.35 V (f) for Ru-P25-TiO2 and Ru-R-TiO2.
Fig. 5. DFT results of the model catalysts. The projected d-band states in Ru-A-TiO2 (a) and Ru-R-TiO2 (b). (c) The hydroxide binding energy of Ru-A-TiO2 and Ru-R-TiO2 on Ru and Ti sites. (d) The hydrogen binding energy of Ru-A-TiO2 and Ru-R-TiO2. (e) Free energy profiles of HOR over Ru-A-TiO2 and Ru-R-TiO2.
|
| [1] | Jianchao Yue, Yu Zhang, Qianqian Xiong, Wei Luo. Bridging oxygen-induced hydrogen-bond network reconstruction in phosphorus-doped carbon-coated Ni catalyst enhances alkaline hydrogen oxidation electrocatalysis [J]. Chinese Journal of Catalysis, 2026, 82(3): 144-152. |
| [2] | Yiming Jin, Wenjing Cheng, Wei Luo. Ru single atoms-induced interfacial water structure regulation for efficient alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2025, 74(7): 240-249. |
| [3] | Yi Liu, Shuqing Zhou, Chenggong Niu, Tayirjan Taylor Isimjan, Yongfa Zhu, Dingsheng Wang, Xiulin Yang, Jieshan Qiu, Bin Wu. Boosting the Volmer step by synergistic coupling of dilute CuRu nanoalloy with Cu/Ru dual single atoms for efficient and CO-tolerant alkaline hydrogen oxidation [J]. Chinese Journal of Catalysis, 2025, 72(5): 266-276. |
| [4] | Jin Liu, Zhuoyang Xie, Qiong Xiang, Xia Chen, Mengting Li, Jiawei Liu, Li Li, Zidong Wei. Decoupling the HOR enhancement on PtRu: Dynamically matching interfacial water to reaction coordinates [J]. Chinese Journal of Catalysis, 2025, 78(11): 303-312. |
| [5] | Jinchi Li, Wanhai Zhou, Shuqi Yu, Chen Qing, Jian He, Liang Zeng, Yao Wang, Yungui Chen. Cu-induced interface engineering of NiCu/Ni3N heterostructures for enhanced alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2024, 67(12): 186-193. |
| [6] | Yuting Yang, Luyan Shi, Qinrui Liang, Yi Liu, Jiaxin Dong, Tayirjan Taylor Isimjan, Bao Wang, Xiulin Yang. Uleashing efficient and CO-resilient alkaline hydrogen oxidation of Pd3P through phosphorus vacancy defect engineering [J]. Chinese Journal of Catalysis, 2024, 56(1): 176-187. |
| [7] | Pengyu Han, Na Yao, Wei Zuo, Wei Luo. Manipulating the electronic structure of Ni electrocatalyst through d-p orbital hybridization induced by B-doping for efficient alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1527-1534. |
| [8] | Peng Li, Guoqiang Zhao, Ningyan Cheng, Lixue Xia, Xiaoning Li, Yaping Chen, Mengmeng Lao, Zhenxiang Cheng, Yan Zhao, Xun Xu, Yinzhu Jiang, Hongge Pan, Shi Xue Dou, Wenping Sun. Toward enhanced alkaline hydrogen electrocatalysis with transition metal-functionalized nitrogen-doped carbon supports [J]. Chinese Journal of Catalysis, 2022, 43(5): 1351-1359. |
| [9] | Lulu An, Shaofeng Deng, Xuyun Guo, Xupo Liu, Tonghui Zhao, Ke Chen, Ye Zhu, Yuxi Fu, Xu Zhao, Deli Wang. Enhancing hydrogen electrocatalytic oxidation on Ni3N/MoO2 in-plane heterostructures in alkaline solution [J]. Chinese Journal of Catalysis, 2022, 43(12): 3154-3160. |
| [10] | Caili Xu, Qian Chen, Rong Ding, Shengtian Huang, Yun Zhang, Guangyin Fan. Sustainable solid-state synthesis of uniformly distributed PdAg alloy nanoparticles for electrocatalytic hydrogen oxidation and evolution [J]. Chinese Journal of Catalysis, 2021, 42(2): 251-258. |
| [11] | Yang Qiu, Xiaohong Xie, Wenzhen Li, Yuyan Shao. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design [J]. Chinese Journal of Catalysis, 2021, 42(12): 2094-2104. |
| [12] | Zhongjing Deng, Xingqun Zheng, Mingming Deng, Li Li, Li Jing, Zidong Wei. Catalytic activity of V2CO2 MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions: A density functional theory calculation study [J]. Chinese Journal of Catalysis, 2021, 42(10): 1659-1666. |
| [13] | Jiangyan Wang, Baoshun Liu, Kazuya Nakata. Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO2 crystals [J]. Chinese Journal of Catalysis, 2019, 40(3): 403-412. |
| [14] | Lichao Wang, Shuang Cao, Kai Guo, Zhijiao Wu, Zhi Ma, Lingyu Piao. Simultaneous hydrogen and peroxide production by photocatalytic water splitting [J]. Chinese Journal of Catalysis, 2019, 40(3): 470-475. |
| [15] | Yexuan Wen, Shuang Cao, Xiaoqi Fei, Haiqiang Wang, Zhongbiao Wu. One-step synthesized SO42--TiO2 with exposed (001) facets and its application in selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2018, 39(4): 771-778. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||