Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (11): 1876-1902.DOI: 10.1016/S1872-2067(21)63855-X
• Review • Previous Articles Next Articles
Wenli Yua, Yuxiao Gaoa, Zhi Chena, Ying Zhaoa, Zexing Wua,*(), Lei Wanga,b,#(
)
Received:
2021-02-27
Revised:
2021-02-27
Accepted:
2021-05-21
Online:
2021-11-18
Published:
2021-06-08
Contact:
Zexing Wu,Lei Wang
About author:
#Tel/Fax: +86-532-84022016; E-mail: inor-chemwl@126.comSupported by:
Wenli Yu, Yuxiao Gao, Zhi Chen, Ying Zhao, Zexing Wu, Lei Wang. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides[J]. Chinese Journal of Catalysis, 2021, 42(11): 1876-1902.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(21)63855-X
Catalyst | P source | Electrolyte | η10 mA cm-2/ mV | Tafel/ (mV dec-1) | Ref. |
---|---|---|---|---|---|
Post-treatment methods | |||||
NiCu-P | red P | 0.5 M H2SO4 1 M PBS 1 M KOH | 226 250 175 | 37 96 53 | [ |
FLNPC@MoP-NC/MoP-C/CC | NaH2PO2 | 0.5 M H2SO4 1 M PBS 1 M KOH | 74 106 69 | 50 73 52 | [ |
FeP/NCNSs | NaH2PO2 | 0.5 M H2SO4 1 M PBS 1 M KOH | 114 205 409 | 64 70 92 | [ |
Ni2P/Ni@C | NaH2PO2 | 0.5 M H2SO4 | 149 | 61 | [ |
FeP film | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 65 84 | 48.5 85 | [ |
CoP/NPC/TF | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 91 80 | 54 50 | [ |
MoP@PC-CNTs | (NH4)2HPO4 | 0.5 M H2SO4 | 220 | 55.9 | [ |
MoP@PC | (NH4)2HPO4 | 0.5 M H2SO4 | 258 | 59.3 | [ |
Co/CoP@NC | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 117 180 | 48.1 73.7 | [ |
CoMn-P@NG | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 140 164 | 110.69 64.85 | [ |
MoP@PC/rGO | (NH4)2HPO4 | 0.5 M H2SO4 | 62.3 | 53.6 | [ |
In situ generation methods | |||||
N@MoPCx-800 | phenylphosphonic acid | 0.5 M H2SO4 1 M KOH | 108 139 | 69.4 86.6 | [ |
MoP@NPCS | hydroxyethylidene diphosphonic acid | 1 M KOH | 107 | 51 | [ |
Ru-Ru2P@NPC | saccharomycetes | 0.5 M H2SO4 1 M PBS 1 M KOH | 42 41 46 | 39.75 56.79 39.75 | [ |
Co-Co2P@NPC/ rGO | saccharomycetes | 0.5 M H2SO4 | 136 | 50.64 | [ |
NiCo-NiCoP@ PCT/CC | phytic acid | 1 M KOH | 135 | 77.79 | [ |
CoP-NB | phytic acid | 0.5 M H2SO4 | 107 | 53 | [ |
Electrodeposition methods | |||||
Co/CoP-NF | NaH2PO2 | 1 M NaOH | 35 | 71 | [ |
Co-P-S | NaH2PO2 | 1 M KOH | 58 | 68 | [ |
Ni-Mo-P/NF | NaH2PO2 | 1 M KOH | 63 | 87.3 | [ |
NixP/NF | NaH2PO2 | 1 M KOH | 63 | 55 | [ |
Ni-P/NF | NaH2PO2 | 0.2 M KPi 1 M KOH | 54 30 | — | [ |
Co-Ni-P-2 | NaH2PO2 | 1 M KOH | 103 | 33 | [ |
FeP nanocubes/CP | NaH2PO2 | 1 M KOH | 140 | 61.92 | [ |
Ni-Cu-P film | NaH2PO4· H2O | 0.5 M H2SO4 1 M KOH | 150 120 | — 69 | [ |
Table 1 Comparison of metal phosphide electrocatalysts prepared using different methods.
Catalyst | P source | Electrolyte | η10 mA cm-2/ mV | Tafel/ (mV dec-1) | Ref. |
---|---|---|---|---|---|
Post-treatment methods | |||||
NiCu-P | red P | 0.5 M H2SO4 1 M PBS 1 M KOH | 226 250 175 | 37 96 53 | [ |
FLNPC@MoP-NC/MoP-C/CC | NaH2PO2 | 0.5 M H2SO4 1 M PBS 1 M KOH | 74 106 69 | 50 73 52 | [ |
FeP/NCNSs | NaH2PO2 | 0.5 M H2SO4 1 M PBS 1 M KOH | 114 205 409 | 64 70 92 | [ |
Ni2P/Ni@C | NaH2PO2 | 0.5 M H2SO4 | 149 | 61 | [ |
FeP film | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 65 84 | 48.5 85 | [ |
CoP/NPC/TF | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 91 80 | 54 50 | [ |
MoP@PC-CNTs | (NH4)2HPO4 | 0.5 M H2SO4 | 220 | 55.9 | [ |
MoP@PC | (NH4)2HPO4 | 0.5 M H2SO4 | 258 | 59.3 | [ |
Co/CoP@NC | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 117 180 | 48.1 73.7 | [ |
CoMn-P@NG | NaH2PO2 | 0.5 M H2SO4 1 M KOH | 140 164 | 110.69 64.85 | [ |
MoP@PC/rGO | (NH4)2HPO4 | 0.5 M H2SO4 | 62.3 | 53.6 | [ |
In situ generation methods | |||||
N@MoPCx-800 | phenylphosphonic acid | 0.5 M H2SO4 1 M KOH | 108 139 | 69.4 86.6 | [ |
MoP@NPCS | hydroxyethylidene diphosphonic acid | 1 M KOH | 107 | 51 | [ |
Ru-Ru2P@NPC | saccharomycetes | 0.5 M H2SO4 1 M PBS 1 M KOH | 42 41 46 | 39.75 56.79 39.75 | [ |
Co-Co2P@NPC/ rGO | saccharomycetes | 0.5 M H2SO4 | 136 | 50.64 | [ |
NiCo-NiCoP@ PCT/CC | phytic acid | 1 M KOH | 135 | 77.79 | [ |
CoP-NB | phytic acid | 0.5 M H2SO4 | 107 | 53 | [ |
Electrodeposition methods | |||||
Co/CoP-NF | NaH2PO2 | 1 M NaOH | 35 | 71 | [ |
Co-P-S | NaH2PO2 | 1 M KOH | 58 | 68 | [ |
Ni-Mo-P/NF | NaH2PO2 | 1 M KOH | 63 | 87.3 | [ |
NixP/NF | NaH2PO2 | 1 M KOH | 63 | 55 | [ |
Ni-P/NF | NaH2PO2 | 0.2 M KPi 1 M KOH | 54 30 | — | [ |
Co-Ni-P-2 | NaH2PO2 | 1 M KOH | 103 | 33 | [ |
FeP nanocubes/CP | NaH2PO2 | 1 M KOH | 140 | 61.92 | [ |
Ni-Cu-P film | NaH2PO4· H2O | 0.5 M H2SO4 1 M KOH | 150 120 | — 69 | [ |
Fig. 4. (a) Calculated free energy diagram for the HER on NiCoP and S-NiCoP. Reproduced with permission [111]. Copyright 2019, Royal Society of Chemistry. (b) Schematic fabrication of S-CoP. (c) Free energy diagram of HER on the (002) and (101) surfaces of CoP, CoP-S1, and S-CoP. (d) d-Orbital partial DOS of Co on the (002) surfaces of CoP, CoP-S1, and S-CoP. (e) Electron density map of the Co-H bonding region on the (002) surfaces of CoP, CoP-S1, and S-CoP. Red and blue denote the electron accumulation and depletion regions, respectively. (b?e) Reproduced with permission [113]. Copyright 2020, Royal Society of Chemistry. (f) Crystal structures of CoP2 and N-CoP2 with lattice constants and the corresponding mapping of orbital wave functions. Reproduced with permission [116]. Copyright 2020, American Association for the Advancement of Science. (g) HER polarization curves of Ni2P-based electrocatalysts in a neutral electrolyte. Reproduced with permission [118]. Copyright 2020, Elsevier.
Fig. 5. (a) Schematic formation of Ni-doped FeP/C hollow nanorods. (b) ΔGH* as a function of θH for Pt, FeP, and Ni-doped FeP. (a) and (b) Reproduced with permission [132]. Copyright 2019, American Association for the Advancement of Science. (c) Schematic energy bands of the individual water HOMO and the Co 3d orbital on the non-doped CoP (111) surface. (d) Schematic energy bands of the individual water HOMO and the M’ d-orbital on the M’-substituted CoP (111) surface. εF represents the Fermi level. (e) Calculated proportion of unoccupied d-orbitals (Pun) for different transition metal dopants. The Co atoms in CoP (111) are also treated as a dopant. The inset is the equation used to calculate Pun. (f) Electrochemical overpotential (η)@10 mA cm-2 for different transition-metal-doped CoP catalysts. (g) Trends in η@10 mA cm-2 for the alkaline HER as a function of Pun. (c?g) Reproduced with permission [137]. Copyright 2020, Cell Press.
Catalyst | Dopant | Electrolyte | η10 mA cm-2/ mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|---|
B-CoP/CNT | B | 0.5 M H2SO4 1 M PBS 1 M KOH | 39 79 56 | 50 80 69 | [ |
CoP-N/Co foam | N | 1 M KOH | 60 | 50.9 | [ |
N-Ni5P4 hollow spheres | N | 1 M KOH | 96 | 62.2 | [ |
N-MoP/CC | N | 1 M KOH | 70 | 55 | [ |
H-NiCoP NWAs/NF | O | 1 M KOH 1 M PBS | 44 51 | 38.6 79.2 | [ |
S-MoP NPL | S | 0.5 M H2SO4 1 M PBS 1 M KOH | 86 142 104 | 34 98 56 | [ |
S-NiCoP NW/CFP | S | 1 M KOH | 102 | 63.3 | [ |
S-Ni5P4 NPA/CP | S | 0.5 M H2SO4 | 56 | 43.6 | [ |
S-CoP | S | 1 M KOH | 49 | 58.4 | [ |
N,B-Ni2P/G | N, B | 0.5 M H2SO4 1 M PBS 1 M KOH | 79 124 92 | 48.3 60.4 57.7 | [ |
Al-Ni2P/TM | Al | 1 M KOH | 129 | 98 | [ |
Fe-Co2P BNRs | Fe | 0.5 M H2SO4 1 M KOH | 159 156 | 95 90 | [ |
Fe0.074NiP | Fe | 1 M KOH | 108 | 52.1 | [ |
Ni-FeP/TiN/CC | Ni | 1 M KOH | 75 | 73 | [ |
Ni-WP2 NSs/CC | Ni | 0.5 M H2SO4 | 110 | 65 | [ |
Mn-NiP2/CC | Mn | 0.5 M H2SO4 1 M PBS 1 M KOH | 69 107 97 | 45 91 61 | [ |
0.05Mn-MoP | Mn | 0.5 M H2SO4 | 199 | 49 | [ |
V-Ni2P NSAs/CC | V | 1 M KOH | 85 | 95 | [ |
Co0.9W1.1P2/C | W | 0.5 M H2SO4 1 M KOH | 35 54 | 34 59 | [ |
3% Bi/CoP | Bi | 0.5 M H2SO4 1 M KOH | 150 122 | 64.5 60.2 | [ |
V,N-CoP | V, N | 0.5 M H2SO4 1 M PBS 1 M KOH | 81 146 57 | 59 88 54 | [ |
Table 2 Comparison of metal phosphide electrocatalysts doped with different elements.
Catalyst | Dopant | Electrolyte | η10 mA cm-2/ mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|---|
B-CoP/CNT | B | 0.5 M H2SO4 1 M PBS 1 M KOH | 39 79 56 | 50 80 69 | [ |
CoP-N/Co foam | N | 1 M KOH | 60 | 50.9 | [ |
N-Ni5P4 hollow spheres | N | 1 M KOH | 96 | 62.2 | [ |
N-MoP/CC | N | 1 M KOH | 70 | 55 | [ |
H-NiCoP NWAs/NF | O | 1 M KOH 1 M PBS | 44 51 | 38.6 79.2 | [ |
S-MoP NPL | S | 0.5 M H2SO4 1 M PBS 1 M KOH | 86 142 104 | 34 98 56 | [ |
S-NiCoP NW/CFP | S | 1 M KOH | 102 | 63.3 | [ |
S-Ni5P4 NPA/CP | S | 0.5 M H2SO4 | 56 | 43.6 | [ |
S-CoP | S | 1 M KOH | 49 | 58.4 | [ |
N,B-Ni2P/G | N, B | 0.5 M H2SO4 1 M PBS 1 M KOH | 79 124 92 | 48.3 60.4 57.7 | [ |
Al-Ni2P/TM | Al | 1 M KOH | 129 | 98 | [ |
Fe-Co2P BNRs | Fe | 0.5 M H2SO4 1 M KOH | 159 156 | 95 90 | [ |
Fe0.074NiP | Fe | 1 M KOH | 108 | 52.1 | [ |
Ni-FeP/TiN/CC | Ni | 1 M KOH | 75 | 73 | [ |
Ni-WP2 NSs/CC | Ni | 0.5 M H2SO4 | 110 | 65 | [ |
Mn-NiP2/CC | Mn | 0.5 M H2SO4 1 M PBS 1 M KOH | 69 107 97 | 45 91 61 | [ |
0.05Mn-MoP | Mn | 0.5 M H2SO4 | 199 | 49 | [ |
V-Ni2P NSAs/CC | V | 1 M KOH | 85 | 95 | [ |
Co0.9W1.1P2/C | W | 0.5 M H2SO4 1 M KOH | 35 54 | 34 59 | [ |
3% Bi/CoP | Bi | 0.5 M H2SO4 1 M KOH | 150 122 | 64.5 60.2 | [ |
V,N-CoP | V, N | 0.5 M H2SO4 1 M PBS 1 M KOH | 81 146 57 | 59 88 54 | [ |
Fig. 6. (a) Free energy diagram of H adsorption on the surfaces of NiSe2, Ni2P, and NiSe2-Ni2P. (b) H2O adsorption energies of Ni2P, NiSe2 and NiSe2-Ni2P. (a) and (b) Reproduced with permission [161]. Copyright 2019, Elsevier. (c) TEM image of P-MoP/Mo2N. Reproduced with permission [165]. Copyright 2020, Wiley-VCH. (d) Schematic synthesis of Ni-P/Ni/NF. Reproduced with permission [166]. Copyright 2019, Elsevier.
Fig. 7. (a) Schematic synthesis of CoP/CoMoP. Reproduced with permission [174]. Copyright 2019, Elsevier. (b) Linear sweep voltammograms of CFP, Cuf, NiP2-FeP2/CFP, NiP2-FeP2/CuNW/Cuf, and 20 wt% Pt/C/Cuf. Reproduced with permission [177]. Copyright 2020, American Chemical Society. (c) TEM image of P-Ni2P/Ru-1. (d) Linear sweep voltammograms of P-Ni2P/Ru-1 and the reference samples. Reproduced with permission [178]. Copyright 2020, Elsevier.
Catalyst | Electrolyte | η10 mA cm-2/ mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|
MoP/MoS2-8 | 0.5 M H2SO4 1 M PBS 1 M KOH | 69 96 54 | 61 48 58 | [ |
Ni2P-NiSe2/CC | 1 M KOH | 66 | 72.6 | [ |
NiSe2-Ni2P/NF | 1 M KOH | 102 | 68 | [ |
NiP2/NiSe2 | 1 M KOH | 93 | 65.7 | [ |
Ni-P/Ni/NF | 0.5 M H2SO4 0.1 M PBS 1 M KOH | 83 112 129 | 68 179 70 | [ |
Ni2P/NiTe2/NF | 1 M KOH | 62 | 80 | [ |
Ni2P-Ni12P5/NF | 1 M KOH | 76 | 68 | [ |
Co2P/CoMoPx-0.4/NF | 1 M NaOH | 22 | 87.2 | [ |
Co2P/WC@NC | 0.5 M H2SO4 | 91 | 40 | [ |
CoMoP-5 | 0.5 M H2SO4 0.1 M PBS 1 M KOH | 95 89 110 | 61.1 96.5 64.1 | [ |
CC@MoS2/MoP/Ru-450 | 1 M KOH | 45 | 52.9 | [ |
CoP3/Ni2P | 0.5 M H2SO4 | 115 | 49 | [ |
CoP-MoO2/MF | 1 M KOH | 42 | 127 | [ |
CoP/NiCoP/NC | 0.5 M H2SO4 1 M PBS 1 M KOH | 60 123 75 | 58 78 64 | [ |
CoP-CeO2/Ti | 1 M KOH | 43 | 54 | [ |
Table 3 Comparison of metal phosphide electrocatalysts with different interfaces.
Catalyst | Electrolyte | η10 mA cm-2/ mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|
MoP/MoS2-8 | 0.5 M H2SO4 1 M PBS 1 M KOH | 69 96 54 | 61 48 58 | [ |
Ni2P-NiSe2/CC | 1 M KOH | 66 | 72.6 | [ |
NiSe2-Ni2P/NF | 1 M KOH | 102 | 68 | [ |
NiP2/NiSe2 | 1 M KOH | 93 | 65.7 | [ |
Ni-P/Ni/NF | 0.5 M H2SO4 0.1 M PBS 1 M KOH | 83 112 129 | 68 179 70 | [ |
Ni2P/NiTe2/NF | 1 M KOH | 62 | 80 | [ |
Ni2P-Ni12P5/NF | 1 M KOH | 76 | 68 | [ |
Co2P/CoMoPx-0.4/NF | 1 M NaOH | 22 | 87.2 | [ |
Co2P/WC@NC | 0.5 M H2SO4 | 91 | 40 | [ |
CoMoP-5 | 0.5 M H2SO4 0.1 M PBS 1 M KOH | 95 89 110 | 61.1 96.5 64.1 | [ |
CC@MoS2/MoP/Ru-450 | 1 M KOH | 45 | 52.9 | [ |
CoP3/Ni2P | 0.5 M H2SO4 | 115 | 49 | [ |
CoP-MoO2/MF | 1 M KOH | 42 | 127 | [ |
CoP/NiCoP/NC | 0.5 M H2SO4 1 M PBS 1 M KOH | 60 123 75 | 58 78 64 | [ |
CoP-CeO2/Ti | 1 M KOH | 43 | 54 | [ |
Fig. 8. (a) Electron distribution map, with regions of electron accumulation and depletion indicated by yellow and cyan, respectively. (b) Two-dimensional charge difference isosurface, with regions of electron accumulation and depletion indicated by red and blue, respectively. (a) and (b) Reproduced with permission [194]. Copyright 2020, Wiley-VCH. (c) EPR spectra of NiCoP, Ar-NiCoP and Ar-NiCoP|V. Linear sweep voltammograms of the above catalysts for (d) HER and (e) OER tests. (c?e) Reproduced with permission [195]. Copyright 2019, Royal Society of Chemistry. (f) Free energy diagram and (g) density of states of FeP, Mg-FeP and Vc-FeP (111) surfaces. (f) and (g) Reproduced with permission [202]. Copyright 2017, Wiley-VCH.
Catalyst | Vacancy parameter | Electrolyte | η10 mA cm-2/ mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|---|
v-Ni12P5 | P | 1 M KOH | 27.7 | 30.88 | [ |
F-CoP-Vp-2 | P | 1 M PBS | 108 | 88.9 | [ |
Ar-NiCoP|V | P | 1 M KOH | 58 | 51.7 | [ |
D-Ni5P4|Fe | P | 1 M KOH | 94.5 | 91 | [ |
A-Ni2P/Cu3P | P | 1 M KOH | 88 | 89 | [ |
Vc-FeP(NP)/Ti | Fe | 1 M KOH | 108 | 62 | [ |
LC-WP | W | 0.5 M H2SO4 | 170 | 52 | [ |
Table 4 Comparison of metal phosphide electrocatalysts with different vacancies.
Catalyst | Vacancy parameter | Electrolyte | η10 mA cm-2/ mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|---|
v-Ni12P5 | P | 1 M KOH | 27.7 | 30.88 | [ |
F-CoP-Vp-2 | P | 1 M PBS | 108 | 88.9 | [ |
Ar-NiCoP|V | P | 1 M KOH | 58 | 51.7 | [ |
D-Ni5P4|Fe | P | 1 M KOH | 94.5 | 91 | [ |
A-Ni2P/Cu3P | P | 1 M KOH | 88 | 89 | [ |
Vc-FeP(NP)/Ti | Fe | 1 M KOH | 108 | 62 | [ |
LC-WP | W | 0.5 M H2SO4 | 170 | 52 | [ |
Fig. 9. (a) ΔGH* values of CoP@DrGO, CoP@rGO, CoP, graphene, and Pt (111). Calculated differential charge density between P and H from top and side views of (b) CoP@DrGO and (c) CoP@rGO. (a?c) Reproduced with permission [212]. Copyright 2019, Elsevier. (d) SEM and (e) TEM images of MoP@NC-250. (f) H2O* (ΔEH2O*) and OH* (ΔEOH*) adsorption energies of selected Mo-containing catalysts. (g) Computed adsorption free energy profile of H2 evolution for different substrate surfaces. (d?g) Reproduced with permission [213]. Copyright 2020, Elsevier. (h) Schematic synthesis of CFC-CNT-CoOx/CoP. Reproduced with permission [216]. Copyright 2021, Elsevier.
Fig. 10. (a) Schematic synthesis of MCPS. Reproduced with permission [218]. Copyright 2019, American Chemical Society. Linear sweep voltammograms of the designed electrocatalysts in (b) 1 M KOH, (c) 0.5 M H2SO4, and (d) 1 M PBS. (b?d) Reproduced with permission [219]. Copyright 2020, Royal Society of Chemistry. (e) Cyclic voltammograms of CoP/C and CoP/CN/Ni in 1 M KOH. (f) Linear sweep voltammograms of Pt/C, CN/Ni, CoP/C, CoP/CN/Ni, and bare GC. Reproduced with permission [225]. Copyright 2021, Elsevier.
Catalyst | Support | Electrolyte | η10 mA cm-2/ mV | Tafel/ (mV dec-1) | Ref. | |
---|---|---|---|---|---|---|
CFC-CNT-CoOx/CoP | CFC-CNT | 1 M KOH | 108 | 60 | [ | |
NiCoP-CNT@NiCo/ CP | CNT | 1 M KOH | 82 | 76 | [ | |
CoP-NC | NC | 0.5 M H2SO4 1 M PBS 1 M KOH | 145 252 167 | 55 110 57 | [ | |
MoP@C | Mo,P co-doped carbon | 1 M KOH | 49 | 54 | [ | |
MoP@NC-250 | NC | 1 M KOH | 96 | 53 | [ | |
Ni1Co3-P@CSs | CS | 1 M KOH | 57 | 44 | [ | |
MoP/CDs | CDs | 1 M KOH | 70 | 77.49 | [ | |
MCPS | MoS2 | 0.5 M H2SO4 1 M KOH | 53 77 | 37 38 | [ | |
NiCoP/CoP-Ti4O7 | Ti4O7 | 0.5 M H2SO4 | 128 | 65.5 | [ | |
Ni2-xMoxP/NiMoO4-y | NiMoO4-y | 1 M KOH | 36 | 53 | [ | |
CoP/Ti3C2 MXene | Ti3C2 MXene | 0.5 M H2SO4 1 M PBS 1 M KOH | 71 124 102 | 57.6 96.8 68.7 | [ | |
Ni2P/Ti3C2Tx/NF | Ti3C2Tx | 1 M KOH | 135 | 86.6 | [ | |
CoP/CN/Ni | CN/Ni | 0.5 M H2SO4 1 M KOH | 66 105 | 39.5 53.4 | [ |
Table 5 Comparison of metal phosphide electrocatalysts with different supports.
Catalyst | Support | Electrolyte | η10 mA cm-2/ mV | Tafel/ (mV dec-1) | Ref. | |
---|---|---|---|---|---|---|
CFC-CNT-CoOx/CoP | CFC-CNT | 1 M KOH | 108 | 60 | [ | |
NiCoP-CNT@NiCo/ CP | CNT | 1 M KOH | 82 | 76 | [ | |
CoP-NC | NC | 0.5 M H2SO4 1 M PBS 1 M KOH | 145 252 167 | 55 110 57 | [ | |
MoP@C | Mo,P co-doped carbon | 1 M KOH | 49 | 54 | [ | |
MoP@NC-250 | NC | 1 M KOH | 96 | 53 | [ | |
Ni1Co3-P@CSs | CS | 1 M KOH | 57 | 44 | [ | |
MoP/CDs | CDs | 1 M KOH | 70 | 77.49 | [ | |
MCPS | MoS2 | 0.5 M H2SO4 1 M KOH | 53 77 | 37 38 | [ | |
NiCoP/CoP-Ti4O7 | Ti4O7 | 0.5 M H2SO4 | 128 | 65.5 | [ | |
Ni2-xMoxP/NiMoO4-y | NiMoO4-y | 1 M KOH | 36 | 53 | [ | |
CoP/Ti3C2 MXene | Ti3C2 MXene | 0.5 M H2SO4 1 M PBS 1 M KOH | 71 124 102 | 57.6 96.8 68.7 | [ | |
Ni2P/Ti3C2Tx/NF | Ti3C2Tx | 1 M KOH | 135 | 86.6 | [ | |
CoP/CN/Ni | CN/Ni | 0.5 M H2SO4 1 M KOH | 66 105 | 39.5 53.4 | [ |
Fig. 11. (a) Schematic preparation of Co-Fe-P nanotubes. Reproduced with permission [236]. Copyright 2019, Elsevier. (b) SEM and (c) TEM images of 2D Co2P. (b,c) Reproduced with permission [241]. Copyright 2018, Royal Society of Chemistry. (d) Schematic synthesis of hollow FeP/C nanosheets. Reproduced with permission [243]. SEM images of pristine Ni(OH)2 (e) and the products obtained after the reaction with potassium hexacyanoferrate at 90 °C for 0.5 h (f), 2 h (g), 4 h (h), 8 h (i), 16 h (j), and 24 h (k). (e?k) Reproduced with permission [244]. Copyright 2018, Wiley-VCH.
Fig. 12. (a) Schematic synthesis of CoP@FeCoP/NC YSMPs. Reproduced with permission [253]. Copyright 2020, Elsevier. TEM images of (b) NiCoG-N, (c) NiCoG-80, (d) NiCoG-150, (e) NiCoG-220, and (f) schematic illustrations of the corresponding samples. (b?f) Reproduced with permission [261]. Copyright 2019, Elsevier. (g) Schematic synthesis of mesoporous metal phosphide microspheres. Reproduced with permission [262]. Copyright 2018, Royal Society of Chemistry.
Catalyst | Morphology | Electrolyte | η10 mA cm-2/mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|---|
NixP-400 | tripod | 1 M KOH | 71 | 79 | [ |
HiHo-NiCoP | hollow-on-hollow | 0.5 M H2SO4 | 103 | 52 | [ |
CoP2/CC | rhombic | 0.5 M H2SO4 1 M KOH | 56 72 | 67 88 | [ |
3DN-Ni2P-Ni | 3D nanopatterning | 0.5 M H2SO4 | 101 | 60 | [ |
CoP-based microspheres | microsphere | 0.5 M H2SO4 1 M KOH | 125 121 | — — | [ |
HWS-NiCoP/NF-A30 | whisker-on-sheet | 1 M KOH | 42 | 66 | [ |
np-CoP3/TM | nanowire | 1 M KOH | 76 | 45 | [ |
Ni1.8Cu0.2-P/NF | holey nanosheets | 1 M KOH | 78 | 70 | [ |
CoNiP microspheres | multi-shelled hollow microsphere | 1 M KOH | 145.8 | 52 | [ |
Ni2P-NW | nanowire | 0.5 M H2SO4 0.5 M PBS 0.11 M KOH | 89 108 139 | 59 — — | [ |
Ni2P/CF-30 | array | 0.5 M H2SO4 | 63 | 67 | [ |
CoNiP-4 | nanobox | 1 M KOH | 138 | 65 | [ |
Co-P@IC/(Co-Fe)P@CC | nanocube | 1 M KOH | 53 | 88 | [ |
Ni2P@NSG | 0D nanocrystal | 1 M KOH | 110 | 43 | [ |
Table 6 Comparison of metal phosphide electrocatalysts with different morphologies.
Catalyst | Morphology | Electrolyte | η10 mA cm-2/mV | Tafel (mV dec-1) | Ref. |
---|---|---|---|---|---|
NixP-400 | tripod | 1 M KOH | 71 | 79 | [ |
HiHo-NiCoP | hollow-on-hollow | 0.5 M H2SO4 | 103 | 52 | [ |
CoP2/CC | rhombic | 0.5 M H2SO4 1 M KOH | 56 72 | 67 88 | [ |
3DN-Ni2P-Ni | 3D nanopatterning | 0.5 M H2SO4 | 101 | 60 | [ |
CoP-based microspheres | microsphere | 0.5 M H2SO4 1 M KOH | 125 121 | — — | [ |
HWS-NiCoP/NF-A30 | whisker-on-sheet | 1 M KOH | 42 | 66 | [ |
np-CoP3/TM | nanowire | 1 M KOH | 76 | 45 | [ |
Ni1.8Cu0.2-P/NF | holey nanosheets | 1 M KOH | 78 | 70 | [ |
CoNiP microspheres | multi-shelled hollow microsphere | 1 M KOH | 145.8 | 52 | [ |
Ni2P-NW | nanowire | 0.5 M H2SO4 0.5 M PBS 0.11 M KOH | 89 108 139 | 59 — — | [ |
Ni2P/CF-30 | array | 0.5 M H2SO4 | 63 | 67 | [ |
CoNiP-4 | nanobox | 1 M KOH | 138 | 65 | [ |
Co-P@IC/(Co-Fe)P@CC | nanocube | 1 M KOH | 53 | 88 | [ |
Ni2P@NSG | 0D nanocrystal | 1 M KOH | 110 | 43 | [ |
Fig. 13. (a) Linear sweep voltammograms of NCPs in 1 M KOH. Reproduced with permission [278]. Copyright 2019, American Chemical Society. (b) Linear sweep voltammograms of Ni2P, FexNi2-xP, and FeP in 0.5 M H2SO4. (c) Exchange current densities and the overpotentials@50 mA cm-2 of Ni2P (wine red), Fe0.5Ni1.5P (red), Fe1.0Ni1.0P (orange), Fe1.5Ni0.5P (green), and Fe2P (blue). Reproduced with permission [280]. Copyright 2020, American Chemical Society. (d) Calculated ΔGH* of CNF-supported Ru/Fe phosphide electrocatalysts. Reproduced with permission [204]. Copyright 2020, Elsevier. (e) Calculated ΔGH* of MoxCo1-xP catalysts. Reproduced with permission [282]. Copyright 2019, Royal Society of Chemistry. (f) Linear sweep voltammograms of FeCoCuP@NC, FeCuP@NC, FeCoP@NC, FeP@NC, CoCuP@NC, CoP@NC, and CuP@NC. Reproduced with permission [283]. Copyright 2020, Elsevier.
Catalyst | Element | Electrolyte | η10 mA cm-2/ mV | Tafel/ mV dec-1 | Ref. |
---|---|---|---|---|---|
MoNiP | Mo,Ni | 0.5 M H2SO4 | 134 | 66 | [ |
NiCoP hollow polyhedron | Ni, Co | 0.5 M H2SO4 | 82 | 72 | [ |
CoNiP/CoxP | Co,Ni | 1 M PBS 1 M KOH Natural seawater | 117 36 290 | — 70 — | [ |
FeCoP2@NPPC | Fe, Co | 0.5 M H2SO4 1 M KOH | 114 150 | 79 79 | [ |
Ni1-Co1-P | Ni,Co | 1 M KOH | 90 | 60.2 | [ |
CoNiP-1:1 NWs | Co,Ni | 1 M KOH | 252 | 128 | [ |
Ni12P5-Ni4Nb5P4/ PCC | Ni,Nb | 1 M KOH | 81 | 64 | [ |
NiCoxPy-P/CC | Ni,Co | 0.5 M H2SO4 1 M KOH | 70 42 | 61 66 | [ |
Fe1-NiCoP | Fe,Co, | 1 M KOH | 60 | 51.1 | [ |
CC-NC-NiFeP | Ni,Fe | 1 M KOH | 94 | 70 | [ |
Ni2P / MoP-CC | Ni, Mo | 1 M KOH | 64 | 78 | [ |
FeCoCuP@NC | Fe,Co,Cu | 0.5 M H2SO4 1 M KOH | 80 169 | 47.6 48.8 | [ |
FeCoNiP@NC | Fe,Co,Ni | 0.5 M H2SO4 1 M KOH | 93 187 | 51.7 52.2 | [ |
np-NiFeMoP | Ni,Fe,Mo | 1 M KOH | 223 | 180.3 | [ |
Table 7 Comparison of bi- and polymetallic phosphides as HER catalysts.
Catalyst | Element | Electrolyte | η10 mA cm-2/ mV | Tafel/ mV dec-1 | Ref. |
---|---|---|---|---|---|
MoNiP | Mo,Ni | 0.5 M H2SO4 | 134 | 66 | [ |
NiCoP hollow polyhedron | Ni, Co | 0.5 M H2SO4 | 82 | 72 | [ |
CoNiP/CoxP | Co,Ni | 1 M PBS 1 M KOH Natural seawater | 117 36 290 | — 70 — | [ |
FeCoP2@NPPC | Fe, Co | 0.5 M H2SO4 1 M KOH | 114 150 | 79 79 | [ |
Ni1-Co1-P | Ni,Co | 1 M KOH | 90 | 60.2 | [ |
CoNiP-1:1 NWs | Co,Ni | 1 M KOH | 252 | 128 | [ |
Ni12P5-Ni4Nb5P4/ PCC | Ni,Nb | 1 M KOH | 81 | 64 | [ |
NiCoxPy-P/CC | Ni,Co | 0.5 M H2SO4 1 M KOH | 70 42 | 61 66 | [ |
Fe1-NiCoP | Fe,Co, | 1 M KOH | 60 | 51.1 | [ |
CC-NC-NiFeP | Ni,Fe | 1 M KOH | 94 | 70 | [ |
Ni2P / MoP-CC | Ni, Mo | 1 M KOH | 64 | 78 | [ |
FeCoCuP@NC | Fe,Co,Cu | 0.5 M H2SO4 1 M KOH | 80 169 | 47.6 48.8 | [ |
FeCoNiP@NC | Fe,Co,Ni | 0.5 M H2SO4 1 M KOH | 93 187 | 51.7 52.2 | [ |
np-NiFeMoP | Ni,Fe,Mo | 1 M KOH | 223 | 180.3 | [ |
Fig. 14. (a) HER activities of MoP700, MoP2, MoP, Mo3P, and Pt/C in acidic, neutral, and basic solutions. (b) Schematic illustration of MoP700-promoted HER at neutral pH. (a) and (b) Reproduced with permission [306]. Copyright 2019, American Chemical Society. (c) Images of H2 bubbles on blank NF and Ni2P/NF together with a schematic illustration of the adhesion behavior of these bubbles on the above materials. Reproduced with permission [307]. Copyright 2019, American Chemical Society. (d) Schematic synthesis of CoP/Co-MOF/CF. Reproduced with permission [308]. Copyright 2019, Wiley-VCH. (e) Linear sweep voltammograms of CoP2 NCs, CoP NCs, Co2P NCs, and Pt/C in 0.5 M H2SO4. Reproduced with permission [310]. Copyright 2019, Wiley-VCH.
|
[1] | Xiaohan Wang, Han Tian, Xu Yu, Lisong Chen, Xiangzhi Cui, Jianlin Shi. Advances and insights in amorphous electrocatalyst towards water splitting [J]. Chinese Journal of Catalysis, 2023, 51(8): 5-48. |
[2] | Ce Han, Bingbao Mei, Qinghua Zhang, Huimin Zhang, Pengfei Yao, Ping Song, Xue Gong, Peixin Cui, Zheng Jiang, Lin Gu, Weilin Xu. Atomic Ru coordinated by channel ammonia in V-doped tungsten bronze for highly efficient hydrogen-evolution reaction [J]. Chinese Journal of Catalysis, 2023, 51(8): 80-89. |
[3] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[4] | Bin Chen, Ya-Fei Jiang, Hai Xiao, Jun Li. Bimetallic single-cluster catalysts anchored on graphdiyne for alkaline hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 50(7): 306-313. |
[5] | Fangpei Ma, Qingping Tang, Shibo Xi, Guoqing Li, Tao Chen, Xingchen Ling, Yinong Lyu, Yunpeng Liu, Xiaolong Zhao, Yu Zhou, Jun Wang. Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 48(5): 137-149. |
[6] | Qi-Ni Zhan, Ting-Yu Shuai, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Gao-Ren Li. Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions [J]. Chinese Journal of Catalysis, 2023, 47(4): 32-66. |
[7] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[8] | Ni Wang, Xue-Peng Zhang, Jinxiu Han, Haitao Lei, Qingxin Zhang, Hang Zhang, Wei Zhang, Ulf-Peter Apfel, Rui Cao. Promoting hydrogen evolution reaction with a sulfonic proton relay [J]. Chinese Journal of Catalysis, 2023, 45(2): 88-94. |
[9] | Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting [J]. Chinese Journal of Catalysis, 2023, 55(12): 116-136. |
[10] | Hui Su, Jing Jiang, Shaojia Song, Bohan An, Ning Li, Yangqin Gao, Lei Ge. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting [J]. Chinese Journal of Catalysis, 2023, 44(1): 7-49. |
[11] | Xue Bai, Jingqi Guan. MXenes for electrocatalysis applications: Modification and hybridization [J]. Chinese Journal of Catalysis, 2022, 43(8): 2057-2090. |
[12] | Chuqiang Huang, Jianqing Zhou, Dingshuo Duan, Qiancheng Zhou, Jieming Wang, Bowen Peng, Luo Yu, Ying Yu. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism [J]. Chinese Journal of Catalysis, 2022, 43(8): 2091-2110. |
[13] | Yu Ding, Kai-Wen Cao, Jia-Wei He, Fu-Min Li, Hao Huang, Pei Chen, Yu Chen. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1535-1543. |
[14] | Pengyu Han, Na Yao, Wei Zuo, Wei Luo. Manipulating the electronic structure of Ni electrocatalyst through d-p orbital hybridization induced by B-doping for efficient alkaline hydrogen oxidation reaction [J]. Chinese Journal of Catalysis, 2022, 43(6): 1527-1534. |
[15] | Limei Lu, Yihe Zhang, Zhensheng Chen, Feng Feng, Kaixuan Teng, Shuting Zhang, Jialin Zhuang, Qi An. Synergistic promotion of HER and OER by alloying ternary Zn-Co-Ni nanoparticles in N-doped carbon interfacial structures [J]. Chinese Journal of Catalysis, 2022, 43(5): 1316-1323. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||