Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (9): 1509-1518.DOI: 10.1016/S1872-2067(20)63758-5
• Articles • Previous Articles Next Articles
Changshun Deng, Yun Cui, Junchao Chen, Teng Chen, Xuefeng Guo, Weijie Ji, Luming Peng, Weiping Ding*()
Received:
2020-11-19
Accepted:
2021-01-11
Online:
2021-09-18
Published:
2021-05-16
Contact:
Weiping Ding
About author:
* Tel: +86-25-89685077; Fax: +86-25-89687761; E-mail: dingwp@nju.edu.cnSupported by:
Changshun Deng, Yun Cui, Junchao Chen, Teng Chen, Xuefeng Guo, Weijie Ji, Luming Peng, Weiping Ding. Enzyme-like mechanism of selective toluene oxidation to benzaldehyde over organophosphoric acid-bonded nano-oxides[J]. Chinese Journal of Catalysis, 2021, 42(9): 1509-1518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63758-5
Fig. 1. Schematic of methane monooxygenase and HDPA-Fe2O3. (a) Structure of sMMO hydroxylase and the reaction cycle for the transformation of methane to methanol over methane monooxygenase summarized from previous investigations. (b) HDPA-Fe2O3 and the possible catalytic cycle of the reaction for the oxidation of toluene presented in this work.
Entry a | Cat. | Oxidant | Pressure (MPa) | Temp. (°C) | pH | Time (h) | Conv. (%) | Sel. (%) | STY c | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Fe3O4 | O2 | 3 | 180 | 2.5 | 4 | < 1 | — | — | [ |
2 | HDPA-Fe3O4 | O2 | 3 | 180 | 2.5 | 4 | 64 | > 99 | 1.6 | |
3 | 25Fe2O3/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | < 8 | 40 | — | [ |
4 | HDPA-25Fe2O3/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | 71 | > 99 | 2.0 | |
5 | (20Fe2O3-5NiO)/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | < 8 | 30 | — | |
6 | HDPA-(20Fe2O3-5NiO)/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | 83 | > 99 | 2.4 | |
7 b | HDPA-FeVOx/γ-Al2O3 | O2 | 0.1 | 160 | — | 4000 d | ~0.8 | > 99 | — | This work |
Table 1 Catalytic performances of reported catalysts in the O2 oxidation of toluene to benzaldehyde.
Entry a | Cat. | Oxidant | Pressure (MPa) | Temp. (°C) | pH | Time (h) | Conv. (%) | Sel. (%) | STY c | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Fe3O4 | O2 | 3 | 180 | 2.5 | 4 | < 1 | — | — | [ |
2 | HDPA-Fe3O4 | O2 | 3 | 180 | 2.5 | 4 | 64 | > 99 | 1.6 | |
3 | 25Fe2O3/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | < 8 | 40 | — | [ |
4 | HDPA-25Fe2O3/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | 71 | > 99 | 2.0 | |
5 | (20Fe2O3-5NiO)/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | < 8 | 30 | — | |
6 | HDPA-(20Fe2O3-5NiO)/Al2O3 | O2 | 2 | 180 | 2.5 | 4 | 83 | > 99 | 2.4 | |
7 b | HDPA-FeVOx/γ-Al2O3 | O2 | 0.1 | 160 | — | 4000 d | ~0.8 | > 99 | — | This work |
Fig. 2. General synthetic procedure and morphology of the catalysts and the arrangement of HDPA on the catalysts. (a) Nano γ-Al2O3 used as catalytic support and its TEM image, with the {111} crystal plane as its main external surface [27]. (b) 25 wt% Fe2O3/γ-Al2O3 prepared by the impregnation and calcination method and its TEM image. (c) HDPA-Fe2O3/γ-Al2O3 prepared by bonding HDPA to 25 wt% Fe2O3/γ-Al2O3 in a density of 0.4/nm2 and its typical TEM image. The TEM observations indicate similar morphologies for the samples. (d) P 2p binding energy measured by XPS for HDPA, HDPA-Fe2O3/γ-Al2O3, and HDPA-FeVOx/γ-Al2O3. (e) FTIR result of pyridine adsorbed on Fe2O3/γ-Al2O3 (i), fresh HDPA-Fe2O3/γ-Al2O3 (ii), and HDPA-Fe2O3/γ-Al2O3 after use in toluene/O2 (iii) or toluene/Ar (iv). The inset shows the proposed Br?nsted acid site that originated from monodentate-bonded HDPA on Fe2O3/γ-Al2O3.
Fig. 3. Operando FTIR measurements with the catalysts on stream. The FTIR spectra of FeVOx/γ-Al2O3 ((a) and (d)) and HDPA-FeVOx/γ-Al2O3 ((b) and (e)) in flowing toluene and oxygen at different temperatures. (c) and (f) depict the FTIR spectra of HDPA-FeVOx/γ-Al2O3 in flowing toluene and argon at different temperatures. (Toluene: 1 μL/min, vaporized in the line; O2 or Ar: 20 mL/min; catalyst of ~0.01 g pressed into a disk; temp.: 30-130 °C).
FeVOx/γ-Al2O3 (Toluene + O2) | HDPA-FeVOx/γ-Al2O3 (Toluene + O2) | HDPA-FeVOx/γ-Al2O3(Toluene + Ar) | Assignment a | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Position | Intensity | Position | Intensity | Position | Intensity | ||||
2934 | n.c. b | 2934 | weak | 2933 | weak | νas(CH) | [ | ||
2879 | 2879 | 2877 | νs(CH) | ||||||
— | 2833 | ↑ from 70 °C | 2836 | ↑ from 100 °C | ν(CH), aldehyde | [ | |||
1948-1799 | 1946-1797 | weak | 1945-1800 | weak | ring, freq. doubling | ||||
— | 1742 | ↑ from 70 °C | 1741 | ↑ from 120 °C | ν(C=O) | [ | |||
1605 | 1603 | weak | 1602 | weak | νs(C=C), ring | [ | |||
1540 | 1538 | 1536 | ν(CC), ring | ||||||
1495 | 1494 | 1496 | |||||||
1460 | 1455 | 1457 | βas(CH) | [ | |||||
1383 | 1384 | 1381 | βs(CH) | ||||||
— | 1340 | ↑ from 70 °C | 1337 | ↑ from 110 °C | δ(CH), aldehyde | [ | |||
1081 | 1080 | Interesting (cf. | 1080 | Interesting (cf. | β(CH), ring | [ | |||
1043 | 1031 | 1031 |
Table 2 Changes in the IR bands with the catalysts on stream during heating (30-130 °C).
FeVOx/γ-Al2O3 (Toluene + O2) | HDPA-FeVOx/γ-Al2O3 (Toluene + O2) | HDPA-FeVOx/γ-Al2O3(Toluene + Ar) | Assignment a | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Position | Intensity | Position | Intensity | Position | Intensity | ||||
2934 | n.c. b | 2934 | weak | 2933 | weak | νas(CH) | [ | ||
2879 | 2879 | 2877 | νs(CH) | ||||||
— | 2833 | ↑ from 70 °C | 2836 | ↑ from 100 °C | ν(CH), aldehyde | [ | |||
1948-1799 | 1946-1797 | weak | 1945-1800 | weak | ring, freq. doubling | ||||
— | 1742 | ↑ from 70 °C | 1741 | ↑ from 120 °C | ν(C=O) | [ | |||
1605 | 1603 | weak | 1602 | weak | νs(C=C), ring | [ | |||
1540 | 1538 | 1536 | ν(CC), ring | ||||||
1495 | 1494 | 1496 | |||||||
1460 | 1455 | 1457 | βas(CH) | [ | |||||
1383 | 1384 | 1381 | βs(CH) | ||||||
— | 1340 | ↑ from 70 °C | 1337 | ↑ from 110 °C | δ(CH), aldehyde | [ | |||
1081 | 1080 | Interesting (cf. | 1080 | Interesting (cf. | β(CH), ring | [ | |||
1043 | 1031 | 1031 |
Fig. 4. Specificity of the catalyst toward toluene oxidation. (a) Turnover frequency (TOF) for benzyl alcohol oxidation over HDPA-FeVOx/γ-Al2O3 and FeVOx/γ-Al2O3 based on surface area. (Benzyl alcohol: 1 μL/min, vaporized in the line; O2: 20 mL/min; cat.: 0.3 g; temp.: 130-190 °C). (b) The adsorption of toluene and benzyl alcohol by the two catalysts in a mixed ethanol solution of toluene and benzyl alcohol (cat.: 0.3 g; 30 mg toluene and 30 mg benzyl alcohol in 50 mL ethanol; temp.: 50 °C). (c) The intensity ratio of the two IR peaks related to the in-plane C-H bending vibrations of the toluene aromatic ring for toluene adsorption over the catalysts during heating between 40 and 130 °C.
Fig. 5. Redox behavior of the catalysts. (a) H2-TPR results of Fe2O3/γ-Al2O3 before and after HDPA bonding; (b) Gas-phase concentrations of benzaldehyde and O2 over HDPA-Fe2O3/γ-Al2O3 during the switch from toluene + O2 to toluene + Ar (toluene: 1 μL/min, vaporized in the line; O2 or Ar: 20 mL/min; cat.: 1 g; temp.: 160 °C).
Fig. 6. Kinetic measurements of the toluene oxidation reaction. (a) Arrhenius plots for the gas-phase toluene conversion over HDPA-Fe2O3/γ-Al2O3 and HDPA-FeVOx/γ-Al2O3 (130-170 °C); (b) Dependences of the reaction rate on the partial pressure of toluene or oxygen over HDPA-FeVOx/γ-Al2O3 (oxygen: 6-18 mL/min; toluene: 0.4-2.0 μL/min (liquid); cat.: 0.3 g; temp.: 170 °C. The total flow of the reactant was kept constant at 20 mL/min with argon used as balance); (c) Effect of the H2O pressure on the TOF of the toluene conversion over HDPA-FeVOx/γ-Al2O3 (toluene: 1 μL/min, vaporized in the line; O2: 20 mL/min; cat.: 0.3 g; temp.: 170 °C).
|
[1] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[2] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[3] | Yuannan Wang, Lina Wang, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang, Xiaoxin Zou. Electrocatalytic water splitting over perovskite oxide catalysts [J]. Chinese Journal of Catalysis, 2023, 50(7): 109-125. |
[4] | Dan-Qing Liu, Bingxing Zhang, Guoqiang Zhao, Jian Chen, Hongge Pan, Wenping Sun. Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 93-120. |
[5] | Yan-Wen Ye, Yi-Ming Hu, Wan-Bin Zheng, Ai-Ping Jia, Yu Wang, Ji-Qing Lu. Hydrogenation of crotonaldehyde over ligand-capped Ir catalysts: Metal-organic interface boosts both activity and selectivity [J]. Chinese Journal of Catalysis, 2023, 47(4): 265-277. |
[6] | Aitao Li, Qian Wang, Xitong Song, Xiaodong Zhang, Jian-Wen Huang, Chun-Chi Chen, Rey-Ting Guo, Binju Wang, Manfred T. Reetz. Engineering of a P450-based Kemp eliminase with a new mechanism [J]. Chinese Journal of Catalysis, 2023, 47(4): 191-199. |
[7] | Runze Liu, Xue Shao, Chang Wang, Weili Dai, Naijia Guan. Reaction mechanism of methanol-to-hydrocarbons conversion: Fundamental and application [J]. Chinese Journal of Catalysis, 2023, 47(4): 67-92. |
[8] | Zhipeng Huang, Yang Yang, Junju Mu, Genheng Li, Jianyu Han, Puning Ren, Jian Zhang, Nengchao Luo, Ke-Li Han, Feng Wang. Controlling the reactions of free radicals with metal-radical interaction [J]. Chinese Journal of Catalysis, 2023, 45(2): 120-131. |
[9] | Jianyun Zheng, Yanhong Lyu, Aibin Huang, Bernt Johannessen, Xun Cao, San Ping Jiang, Shuangyin Wang. Deciphering the synergy between electron localization and alloying for photoelectrochemical nitrogen reduction to ammonia [J]. Chinese Journal of Catalysis, 2023, 45(2): 141-151. |
[10] | Ziye Zheng, Shuang Tian, Yuxiao Feng, Shan Zhao, Xin Li, Shuguang Wang, Zuoli He. Recent advances of photocatalytic coupling technologies for wastewater treatment [J]. Chinese Journal of Catalysis, 2023, 54(11): 88-136. |
[11] | Fulin Zhang, Xia Li, Xiaoyun Dong, Huimin Hao, Xianjun Lang. Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2 [J]. Chinese Journal of Catalysis, 2022, 43(9): 2395-2404. |
[12] | Hui Yang, Kai Dai, Jinfeng Zhang, Graham Dawson. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications [J]. Chinese Journal of Catalysis, 2022, 43(8): 2111-2140. |
[13] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[14] | Bo Lin, Mengyang Xia, Baorong Xu, Ben Chong, Zihao Chen, Guidong Yang. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review [J]. Chinese Journal of Catalysis, 2022, 43(8): 2141-2172. |
[15] | Ye Wang, Jingfeng Han, Nan Wang, Bing Li, Miao Yang, Yimo Wu, Zixiao Jiang, Yingxu Wei, Peng Tian, Zhongmin Liu. Conversion of methanol to propylene over SAPO-14: Reaction mechanism and deactivation [J]. Chinese Journal of Catalysis, 2022, 43(8): 2259-2269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||