Chinese Journal of Catalysis ›› 2025, Vol. 74: 22-70.DOI: 10.1016/S1872-2067(25)64720-6
• Reviews • Previous Articles Next Articles
Xinlong Zhenga,1, Yiming Songa,1, Chongtai Wangb,*(), Qizhi Gaoa, Zhongyun Shaoa, Jiaxin Lina, Jiadi Zhaia, Jing Lia, Xiaodong Shia, Daoxiong Wua, Weifeng Liua, Wei Huanga, Qi Chena, Xinlong Tiana,*(
), Yuhao Liua,*(
)
Received:
2025-01-17
Accepted:
2025-04-09
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: About author:
Chongtai Wang (College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology) received his Ph.D. degree from the College of Chemistry, Sun Yat-Sen University in 2008. He joined the Department of Chemistry, College of Chemistry and Chemical Engineering, Hainan Normal University in 1983, and was promoted to associate professor and full professor in 1999 and 2008, respectively. In 2024, he was hired as a professor in the College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology. His research interests mainly focus on electrochemical energy storage, electrocatalysis, photocatalysis and photoelectric conversion. Supported by:
Xinlong Zheng, Yiming Song, Chongtai Wang, Qizhi Gao, Zhongyun Shao, Jiaxin Lin, Jiadi Zhai, Jing Li, Xiaodong Shi, Daoxiong Wu, Weifeng Liu, Wei Huang, Qi Chen, Xinlong Tian, Yuhao Liu. Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis, 2025, 74: 22-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64720-6
Fig. 1. (a) Illustration of nature photosynthesis I and II with charge separation process of “Z-scheme”. (b) Uphill and downhill thermodynamics photocatalytic reactions. Reprinted with permission from Ref. [83]. Copyright 2018, American Chemical Society. (c) Mechanism illustration and charge transfer behavior of PHE via water splitting. Reprinted with permission from Ref. [77]. Copyright 2021, Springer Singapore. (d) PHE process in sacrificial reagents system. (e) Photogenerated charge transfer behaviors before participating in HER and OER. Reprinted with permission from Ref. [85]. Copyright 2022, Elsevier.
Fig. 3. (a) Restored structure of O-ZnIn2S4. (b) Band structure of O-ZnIn2S4 and pure ZnIn2S4. Ultrafast transient absorption spectroscopy of pure ZnIn2S4 (c) and O-ZnIn2S4 (d). Reprinted with permission from Ref. [101]. Copyright 2016, Wiley. Steady-state PL spectra (e) and time-resolved PL decay spectra (f) of ZnIn2S4, Cu0.5-ZnIn2S4, and Cu3.6-ZnIn2S4. Reprinted with permission from Ref. [102]. Copyright 2019, Wiley.
Fig. 5. Diagrammatic representation of charge migration processes in a standalone photocatalyst (a), type-I heterojunction (b), type-II heterojunction (c), p-n heterojunction (d), Z-scheme heterojunction (lacking an electron mediator) (e) and Z-scheme heterojunction (incorporating an electron mediator) (f) within heterojunction-based photocatalytic systems.
Fig. 6. (a) Representative semiconductor photocatalysts with different band structures. Reprinted with permission from Ref. [129]. Copyright 2020, Elsevier. S-scheme heterojunction charge migration dynamics: prior to contact (b), post-contact (c), and during illumination (d).
Fig. 7. CuInS2 semiconductor photocatalyst characteristics: crystalline structure (a), Brillouin region (b), and DFT-determined electronic energy band configuration (c). Reprinted with permission from Ref. [134]. Copyright 2015, American Physical Society. (d) Crystalline transformation from the layered structure of CuSbS2 to the 3D crystal structure of CuPbSbS3 through the addition of PbS. Electronic energy band configurations of CuSbS2 (e) and CuPbSbS3 (f) as determined by DFT calculations. (g) Total and projected DOS for CuPbSbS3. (h) Charge-state transition levels associated with intrinsic defects in CuPbSbS3, as computed using DFT. Reprinted with permission from Ref. [140]. Copyright 2020, Elsevier. (i) Structural composition and formation pathway of kesterite CZTS (The bottom panel illustrates the projection of the associated crystal lattice). (j) Structural arrangement of wurtzite CZTS. Electronic energy band diagrams for (k) kesterite and (l) wurtzite forms of CZTS. (i,k) Reprinted with permission from Ref. [119]. Copyright 2017, Wiley. (j,l) Reprinted with permission from Ref. [145]. Copyright 2013, Elsevier.
Fig. 8. Structural configurations of ZnS (a), CdS (b), and Zn0.5Cd0.5S (c). The color coding is as follows: Zn in red; Cd in blue; and S in yellow. DFT-determined electronic energy band diagrams for ZnS (d), Zn0.9Cd0.1S (e), Zn0.7Cd0.3S (f), Zn0.5Cd0.5S (g), Zn0.3Cd0.7S (h), Zn0.1Cd0.9S (i), and CdS (j). (k) CB and VB edges of ZnxCd1?xS as the x value decreases from 1 to 0. Reprinted with permission from Ref. [162]. Copyright 2013, American Chemical Society. Structural arrangements of cubic (l), hexagonal (m), and rhombohedral (n) forms of ZnIn2S4. Electronic energy band diagrams for cubic (o) and hexagonal (p) variants of ZnIn2S4. Reprinted with permission from Ref. [174]. Copyright 2015, Royal Society of Chemistry.
Fig. 9. Synthesis process (a) and SEM image (b) of monodisperse CuInS2 hierarchical microarchitectures. Reprinted with permission from Ref. [175]. Copyright 2009, American Chemical Society. Charge transfer behavior during PHE process in the photocatalysts of CuInS2 QDs (c) and TiO2/CuInS2 QDs/CdS (d). Reprinted with permission from Ref. [177]. Copyright 2013, Elsevier. (e) CuInS2-ZnS. Reprinted with permission from Ref. [178]. Copyright 2018, Royal Society of Chemistry. (f) VESTA calculation of S sublattice alignment at the Cu2?xS@CuInS2 composite. (g) Schematic illustration of hollow CuInS2 nanododecahedrons by TEM characterization. Reprinted with permission from Ref. [179]. Copyright 2019, American Chemical Society.
Fig. 10. (a) Structures and charge transfer behaviors of CuInS2 with MoS2 as the cocatalyst. Reprinted with permission from Ref. [180]. Copyright 2016, Wiley. (b,c) Heterojunction construction of type-I: CuInS2/ZnIn2S4. Reprinted with permission from Ref. [181]. Copyright 2019, American Chemical Society. (d,e) Type-II: CuInS2/CdSe. Reprinted with permission from Ref. [182]. Copyright 2022, Elsevier. (f) CuInS2/ZnIn2S4. Reprinted with permission from Ref. [183]. Copyright 2021, Elsevier. (g) CuInS2/rGO/ZnIn2S4. Reprinted with permission from Ref. [184]. Copyright 2021, Elsevier. (h) p-n: CuInS2/ZnIn2S4. Reprinted with permission from Ref. [185]. Copyright 2020, American Chemical Society.
Fig. 11. CuInS2-based photocatalysts featuring Z-scheme and S-scheme heterojunction configurations. (a) Z-scheme: CuInS2/TiO2. Reprinted with permission from Ref. [186]. Copyright 2020, Royal Society of Chemistry. (b) CuInS2/g-C3N4. Reprinted with permission from Ref. [187]. Copyright 2017, American Chemical Society. (c) CuInS2/NCN-CNx/Au. Reprinted with permission from Ref. [188]. Copyright 2021, American Chemical Society. S-scheme: (d) CuInS2/g-C3N4. Reprinted with permission from Ref. [189]. Copyright 2020, Elsevier. (e) CuInS2/Ti3C2 MXene@TiO2. Reprinted with permission from Ref. [190]. Copyright 2022, Elsevier.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CuInS2 | micro-spherical | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 420 nm) | 59.4 | — | [ |
QDs | Ru | — | Na2S/Na2SO3 | 450 W Hg lamp (λ > 400 nm) | 418 | 4.74% λ = 400 nm | [ | |
nanododecahedrons | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1120 | — | [ | |
— | MoS2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 316 | — | [ | |
CuInS2/ZnIn2S4 | 2D/2D structure | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3430.2 | 12.4% λ = 420 nm | [ |
CuInS2/CdSe | microflowers | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp | 10610.37 | 48.97% λ = 420 nm | [ |
CuInS2/ZnIn2S4 | QDs | 0.75 wt% Pt | type-II | Na2S/Na2SO3 | 1000 W Xe lamp (λ > 420 nm) | 1041.46 | 30.6% λ = 420 nm | [ |
CuInS2/rGO/ZnIn2S4 | sphere-like | — | type-II | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 33746 | — | [ |
CuInS2/ZnIn2S4 | microflowers core-shell | — | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1168 | — | [ |
CuInS2/TiO2 | — | — | Z-scheme | Methanol | 300 W Xe lamp (AM 1.5G) | 655.1 | — | [ |
CuInS2/g-C3N4 | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1290 | 4.23% λ = 420 nm | [ |
CuInS2/NCN-CNx | — | Au | Z-scheme | TEOA | 300 W Xe lamp | 10720 | — | [ |
CuInS2/g-C3N4 | — | — | S-scheme | TEOA | 350 W Xe lamp (λ > 420 nm) | 373 | 4.32% λ = 420 nm | [ |
CuInS2/Ti3C2 MXene@TiO2 | — | — | S-scheme | methanol | 300 W Xe lamp | 356.27 | 0.37% λ = 400 nm | [ |
Table 1 PHE performances of CuInS2-based photocatalysts optimized using (1) engineering of morphology and structure and (2) heterojunction construction.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CuInS2 | micro-spherical | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 420 nm) | 59.4 | — | [ |
QDs | Ru | — | Na2S/Na2SO3 | 450 W Hg lamp (λ > 400 nm) | 418 | 4.74% λ = 400 nm | [ | |
nanododecahedrons | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1120 | — | [ | |
— | MoS2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 316 | — | [ | |
CuInS2/ZnIn2S4 | 2D/2D structure | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3430.2 | 12.4% λ = 420 nm | [ |
CuInS2/CdSe | microflowers | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp | 10610.37 | 48.97% λ = 420 nm | [ |
CuInS2/ZnIn2S4 | QDs | 0.75 wt% Pt | type-II | Na2S/Na2SO3 | 1000 W Xe lamp (λ > 420 nm) | 1041.46 | 30.6% λ = 420 nm | [ |
CuInS2/rGO/ZnIn2S4 | sphere-like | — | type-II | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 33746 | — | [ |
CuInS2/ZnIn2S4 | microflowers core-shell | — | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1168 | — | [ |
CuInS2/TiO2 | — | — | Z-scheme | Methanol | 300 W Xe lamp (AM 1.5G) | 655.1 | — | [ |
CuInS2/g-C3N4 | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1290 | 4.23% λ = 420 nm | [ |
CuInS2/NCN-CNx | — | Au | Z-scheme | TEOA | 300 W Xe lamp | 10720 | — | [ |
CuInS2/g-C3N4 | — | — | S-scheme | TEOA | 350 W Xe lamp (λ > 420 nm) | 373 | 4.32% λ = 420 nm | [ |
CuInS2/Ti3C2 MXene@TiO2 | — | — | S-scheme | methanol | 300 W Xe lamp | 356.27 | 0.37% λ = 400 nm | [ |
Fig. 12. (a) PHE rate of CuPbSbS3 photocatalyst and the comparison with other MS-based photocatalysts under the same test condition. (b) PHE mechanism and charge transfer behavior of CuPbSbS3 photocatalyst. (c) Crystal structure of bournonite CuPbSbS3. (d,e) Eleven absorption sites on the exposed (002) surface of CuPbSbS3. Hydrogen adsorption configurations of S1 (f) and S4 (g) sites (inset is the corresponding calculated ΔGH*). (h) Calculated ΔGH* with the adsorbed configurations of S1?S11. Reprinted with permission from Ref. [195]. Copyright 2022, Elsevier. Fabrication (i), band potential (j), and piezo-photocatalytic (k) degradation mechanism of BaTiO3/CuPbSbS3 heterojunction photocatalyst. Reprinted with permission from Ref. [196]. Copyright 2024, Elsevier.
Fig. 13. PHE rates, BET areas (a) and surface specific activities, crystallinities (b) of nanocrystalline CZTS photocatalyst at different annealing temperatures. Reprinted with permission from Ref. [208]. Copyright 2015, Elsevier. (c) PHE rates of phase-transition CZTS photocatalysts through the temperature evolution. Reprinted with permission from Ref. [209]. Copyright 2014, Royal Society of Chemistry. (d) PHE performance comparison of CZTS nanoplate, CZTS nanorod, and Au/CZTS core-shell nanoparticles. (e) PHE mechanism and (f) energy diagram of Au/CZTS core-shell photocatalyst. Reprinted with permission from Ref. [212]. Copyright 2014, Wiley. PHE mechanism of Au/CZTS (g) and Pt/CZTS (h). (i) PHE performances of pure CZTS, Au/CZTS, and Pt/CZTS. Reprinted with permission from Ref. [213]. Copyright 2014, American Chemical Society.
Fig. 14. (a) PHE performance of pure CZTS and PtCo/CZTS with different Pt/Co ratios. Reprinted with permission from Ref. [214]. Copyright 2015, American Chemical Society. (b) Schematic illustration of the fabrication process and the corresponding SEM and TEM images of SiO2/CZTS. Reprinted with permission from Ref. [215]. Copyright 2017, Elsevier. CZTS-based heterojunction photocatalysts of type-II: (c) CZTS/MoS2. Reprinted with permission from Ref. [217]. Copyright 2018, Elsevier. (d) Ag/CZTS/PANI. Reprinted with permission from Ref. [218]. Copyright 2018, American Chemical Society. p-n: (e) CZTS/CeO2. Reprinted with permission from Ref. [219]. Copyright 2019, Royal Society of Chemistry. (f) CZTS/CdS. Reprinted with permission from Ref. [220]. Copyright 2018, Elsevier. Z-scheme: (g) CZTS/Cu2O. Reprinted with permission from Ref. [221]. Copyright 2020, Elsevier.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CZTS | nanosheets | — | — | Na2S/Na2SO3 | 500 W Xe lamp | 30 | — | [ |
nanocrystals | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 64.5 | — | [ | |
phase transition | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 54.8 | — | [ | |
microspheres | — | — | Na2S/Na2SO3 | 300 W Xe lamp | 24.4 | — | [ | |
nanoparticles | — | — | Na2S/Na2SO3 | 100 W Xe lamp (λ > 400 nm) | 68.68 | — | [ | |
core-shell | Au | — | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 102 | — | [ | |
— | Pt | — | Na2S/Na2SO3 | 300 W Xe lamp | 1020 | — | [ | |
— | PtCo | — | Na2S/Na2SO3 | 300 W Xe lamp | 1850 | — | [ | |
— | SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 52.9 | — | [ | |
CZTS/MoS2 | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 470 | — | [ |
CZTS/PANI | — | Ag | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 859.6 | 30.5% λ = 450 nm | [ |
CZTS/CeO2 | — | — | p-n | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 2930 | — | [ |
CZTS/CdS | — | 0.5 wt% Pt | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11540 | — | [ |
CZTS/Cu2O | — | — | Z-scheme | Methanol | 300 W Xe lamp (λ > 420 nm) | 17940 | — | [ |
Table 2 PHE performances of CZTS-based photocatalysts optimized using (1) control of morphology; (2) loading of cocatalyst via Schottky junction formation, and (3) heterojunction construction.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CZTS | nanosheets | — | — | Na2S/Na2SO3 | 500 W Xe lamp | 30 | — | [ |
nanocrystals | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 64.5 | — | [ | |
phase transition | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 54.8 | — | [ | |
microspheres | — | — | Na2S/Na2SO3 | 300 W Xe lamp | 24.4 | — | [ | |
nanoparticles | — | — | Na2S/Na2SO3 | 100 W Xe lamp (λ > 400 nm) | 68.68 | — | [ | |
core-shell | Au | — | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 102 | — | [ | |
— | Pt | — | Na2S/Na2SO3 | 300 W Xe lamp | 1020 | — | [ | |
— | PtCo | — | Na2S/Na2SO3 | 300 W Xe lamp | 1850 | — | [ | |
— | SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 52.9 | — | [ | |
CZTS/MoS2 | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 470 | — | [ |
CZTS/PANI | — | Ag | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 859.6 | 30.5% λ = 450 nm | [ |
CZTS/CeO2 | — | — | p-n | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 2930 | — | [ |
CZTS/CdS | — | 0.5 wt% Pt | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11540 | — | [ |
CZTS/Cu2O | — | — | Z-scheme | Methanol | 300 W Xe lamp (λ > 420 nm) | 17940 | — | [ |
Fig. 15. Several representative reported ZnxCd1?xS photocatalysts with the optimization strategy of control of morphology and design of structure. (a) Flower-like nanorods. Reprinted with permission from Ref. [93]. Copyright 2020, Elsevier. (b) Double-shell hollow nanospheres. Reprinted with permission from Ref. [222]. Copyright 2018, Elsevier. (c) ZIF-8 templated QDs. Reprinted with permission from Ref. [227]. Copyright 2019, American Chemical Society. (d) Dodecahedral hollow structure. Reprinted with permission from Ref. [228]. Copyright 2017, Royal Society of Chemistry. (e) ZIF-67 templated nanoparticles. Reprinted with permission from Ref. [229]. Copyright 2020, Elsevier. (f) Hollow-structured cubic-like. Reprinted with permission from Ref. [230]. Copyright 2022, American Chemical Society.
Fig. 16. Electronic band structures of Zn0.375Cd0.625S (a) and Zn0.75Cd0.25S (b). (c) Mechanism illustration of vacancy introducing on the PHE performance enhancement. Reprinted with permission from Ref. [231]. Copyright 2016, Wiley. UV-Vis spectra (d), XPS-VB spectra (e), and PHE mechanism (f) of Zn0.5Cd0.5S and Zn0.5Cd0.5S-P photocatalysts. Reprinted with permission from Ref. [232]. Copyright 2018, Elsevier. Fabrication process (g) and PHE mechanism (h) of ZnxCd1?xS-P photocatalyst. Reprinted with permission from Ref. [233]. Copyright 2020, Royal Society of Chemistry. (i) Band structures of ZnxCd1?xS (black) and Li-EDA treated ZnxCd1?xS photocatalysts. (j) Charge transfer behaviors of Li-EDA treated ZnxCd1?xS photocatalyst. Reprinted with permission from Ref. [234]. Copyright 2021, Tsinghua University Press.
Fig. 17. Photocatalysts derived from ZnxCd1?xS via cocatalyst loading optimization strategies. (a) Fe0.3Pt0.7-doped ZnxCd1?xS. Reprinted with permission from Ref. [235]. Copyright 2017, Elsevier. (b,c) SiO2/Pt/ZnxCd1?xS. Reprinted with permission from Ref. [236]. Copyright 2021, American Chemical Society. (d) NixB/ZnxCd1?xS. Reprinted with permission from Ref. [238]. Copyright 2020, Royal Society of Chemistry. (e) NiCoP/Zn0.5Cd0.5S. Reprinted with permission from Ref. [239]. Copyright 2020, Springer. (f) NiSx/ZnxCd1?xS. Reprinted with permission from Ref. [240]. Copyright 2021, Royal Society of Chemistry. (g) Co-CoO/Zn0.5Cd0.5S. Reprinted with permission from Ref. [242]. Copyright 2021, Royal Society of Chemistry. (h) Co-MoSx/ZnxCd1?xS. Reprinted with permission from Ref. [243]. Copyright 2021, Elsevier. (i) Co3O4-WP/ZnxCd1?xS. Reprinted with permission from Ref. [244]. Copyright 2022, Elsevier.
Photocatalyst | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnxCd1−xS | nanorods (flower) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp (λ > 420 nm) | 12.57 | — | [ |
Zn0.46Cd0.54S | nanospheres (double-shell hollow) | — | 0.5 wt% Pt | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 4.11 | 23.6% λ = 420 nm | [ |
Zn0.5Cd0.5S | QDs (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.7 | — | [ |
Zn0.6Cd0.4S | hollow cages (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.68 | — | [ |
Zn0.5Cd0.5S | nanoparticles (MOF: ZIF-67) | — | — | — | lactic acid | 5 W LED lamp | 23.2646 | 6.59% λ = 420 nm | [ |
ZnxCd1−xS | cubic-like (NiCoP frameworks) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp | 73 | — | [ |
ZnxCd1−xS | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11.42 | — | [ |
Zn0.5Cd0.5S | — | S-rich vacancy | — | — | — | 3 W LED lamp | 0.419 | 0.12% λ = 420 nm | [ |
ZnxCd1−xS | ZIF-8 | S-rich vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 2.86 | 0.71% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn, S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 33.6 | 25.4% λ = 420 nm | [ |
ZnxCd1−xS | — | — | 0.5 wt% Fe0.3Pt0.7 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.265 | — | [ |
ZnxCd1−xS | core-shell | — | Pt-SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.3 | — | [ |
ZnxCd1−xS | — | — | NixB | — | lactic acid | 5 W Xe lamp | 30.42 | 5.8% λ = 475 nm | [ |
Zn0.5Cd0.5S | — | — | NiCoP | — | lactic acid | 5 W LED white lamp | 15.79 | 6.28% λ = 475 nm | [ |
ZnxCd1−xS | — | — | NiSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 67.75 | 10.24% λ = 420 nm | [ |
Zn0.3Cd0.7S | — | — | Ni3C | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.31 | — | [ |
Zn0.5Cd0.5S | — | — | Co-CoO | — | Na2S/Na2SO3 | 300 W Xe lamp (780 nm > λ > 420 nm) | 8.152 | — | [ |
ZnxCd1−xS | — | — | Co-MoSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 13.787 | 21.7% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn vacancy | Co3O4 | — | — | 5 W LED lamp | 0.061 | 27.6% λ = 420 nm | [ |
CdS@ZnxCd1−xS/ WS2 | nanosheets | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 34.86 | — | [ |
ZnxCd1−xS/CdS | ZIF-8, QDs | — | — | type-II | Na2S/Na2SO3 | 350 W Xe lamp (λ > 420 nm) | 2.7 | 3.84% λ = 400 nm | [ |
ZnxCd1−xS/CdS | core-shell | Zn vacancy | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.17 | — | [ |
ZnxCd1−xS/ CoAl-LDH | — | — | — | type-II | Lactic acid | 5 W LED lamp | 30.32 | 4.67% λ = 420 nm | [ |
Zn0.5Cd0.5S/NiSe2 | — | — | — | Type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 121.01 | — | [ |
Zn0.5Cd0.5S/OLC | hexagonal nanosheets | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 10.8 | 26.6% λ = 400 nm | [ |
ZnxCd1−xS/Co3O4 | — | — | carbon particles | p-n | lactic acid | 5 W LED lamp | 28.1 | — | [ |
Zn0.7Cd0.3S/NiWO4 | — | — | — | p-n | Na2S/Na2SO3 | 5 W LED white lamp (λ > 420 nm) | 15.95 | — | [ |
Zn0.5Cd0.5S/MCo2O4 | — | — | — | p-n | Na2S/Na2SO3 | 3 W LED lamp (λ > 420 nm) | 71.13 | — | [ |
ZnxCd1−xS/Fe2O3 | QDs, graphene | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 26.8 | — | [ |
ZnxCd1−xS/α-Fe2O3 | — | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.37 | 11.2% λ = 420 nm | [ |
ZnxCd1−xS/ZnS | MOF | Zn vacancy | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.31 | — | [ |
ZnxCd1−xS/Co9S8 | — | — | — | S-scheme | lactic acid | 5 W LED lamp | 19.57 | — | [ |
ZnxCd1−xS/ Co@CoO | — | S vacancy | — | S-scheme | — | 300 W Xe lamp (λ > 420 nm) | 0.793 | — | [ |
Table 3 PHE performances of ZnxCd1?xS-based photocatalysts optimized using (1) engineering of morphology and structure; (2) doping; (3) introduction of vacancy; (4) loading of cocatalyst via Schottky junction formation, and (5) heterojunction construction.
Photocatalyst | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnxCd1−xS | nanorods (flower) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp (λ > 420 nm) | 12.57 | — | [ |
Zn0.46Cd0.54S | nanospheres (double-shell hollow) | — | 0.5 wt% Pt | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 4.11 | 23.6% λ = 420 nm | [ |
Zn0.5Cd0.5S | QDs (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.7 | — | [ |
Zn0.6Cd0.4S | hollow cages (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.68 | — | [ |
Zn0.5Cd0.5S | nanoparticles (MOF: ZIF-67) | — | — | — | lactic acid | 5 W LED lamp | 23.2646 | 6.59% λ = 420 nm | [ |
ZnxCd1−xS | cubic-like (NiCoP frameworks) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp | 73 | — | [ |
ZnxCd1−xS | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11.42 | — | [ |
Zn0.5Cd0.5S | — | S-rich vacancy | — | — | — | 3 W LED lamp | 0.419 | 0.12% λ = 420 nm | [ |
ZnxCd1−xS | ZIF-8 | S-rich vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 2.86 | 0.71% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn, S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 33.6 | 25.4% λ = 420 nm | [ |
ZnxCd1−xS | — | — | 0.5 wt% Fe0.3Pt0.7 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.265 | — | [ |
ZnxCd1−xS | core-shell | — | Pt-SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.3 | — | [ |
ZnxCd1−xS | — | — | NixB | — | lactic acid | 5 W Xe lamp | 30.42 | 5.8% λ = 475 nm | [ |
Zn0.5Cd0.5S | — | — | NiCoP | — | lactic acid | 5 W LED white lamp | 15.79 | 6.28% λ = 475 nm | [ |
ZnxCd1−xS | — | — | NiSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 67.75 | 10.24% λ = 420 nm | [ |
Zn0.3Cd0.7S | — | — | Ni3C | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.31 | — | [ |
Zn0.5Cd0.5S | — | — | Co-CoO | — | Na2S/Na2SO3 | 300 W Xe lamp (780 nm > λ > 420 nm) | 8.152 | — | [ |
ZnxCd1−xS | — | — | Co-MoSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 13.787 | 21.7% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn vacancy | Co3O4 | — | — | 5 W LED lamp | 0.061 | 27.6% λ = 420 nm | [ |
CdS@ZnxCd1−xS/ WS2 | nanosheets | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 34.86 | — | [ |
ZnxCd1−xS/CdS | ZIF-8, QDs | — | — | type-II | Na2S/Na2SO3 | 350 W Xe lamp (λ > 420 nm) | 2.7 | 3.84% λ = 400 nm | [ |
ZnxCd1−xS/CdS | core-shell | Zn vacancy | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.17 | — | [ |
ZnxCd1−xS/ CoAl-LDH | — | — | — | type-II | Lactic acid | 5 W LED lamp | 30.32 | 4.67% λ = 420 nm | [ |
Zn0.5Cd0.5S/NiSe2 | — | — | — | Type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 121.01 | — | [ |
Zn0.5Cd0.5S/OLC | hexagonal nanosheets | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 10.8 | 26.6% λ = 400 nm | [ |
ZnxCd1−xS/Co3O4 | — | — | carbon particles | p-n | lactic acid | 5 W LED lamp | 28.1 | — | [ |
Zn0.7Cd0.3S/NiWO4 | — | — | — | p-n | Na2S/Na2SO3 | 5 W LED white lamp (λ > 420 nm) | 15.95 | — | [ |
Zn0.5Cd0.5S/MCo2O4 | — | — | — | p-n | Na2S/Na2SO3 | 3 W LED lamp (λ > 420 nm) | 71.13 | — | [ |
ZnxCd1−xS/Fe2O3 | QDs, graphene | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 26.8 | — | [ |
ZnxCd1−xS/α-Fe2O3 | — | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.37 | 11.2% λ = 420 nm | [ |
ZnxCd1−xS/ZnS | MOF | Zn vacancy | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.31 | — | [ |
ZnxCd1−xS/Co9S8 | — | — | — | S-scheme | lactic acid | 5 W LED lamp | 19.57 | — | [ |
ZnxCd1−xS/ Co@CoO | — | S vacancy | — | S-scheme | — | 300 W Xe lamp (λ > 420 nm) | 0.793 | — | [ |
Fig. 18. Recently reported type-I, type-II, and p-n heterojunction photocatalysts based on ZnxCd1?xS. Type-I: (a) CdS@ZnxCd1?xS/WS2. Reprinted with permission from Ref. [245]. Copyright 2020, Elsevier. Type-II: (b,c) ZnxCd1?xS/CdS along with ZIF-8 and QDs modification. Reprinted with permission from Ref. [246]. Copyright 2021, Royal Society of Chemistry. (d) ZnxCd1?xS/CdS along with core-shell modification. Reprinted with permission from Ref. [247]. Copyright 2017, Wiley. (e) ZnxCd1?xS/CoAl-LDH. Reprinted with permission from Ref. [248]. Copyright 2020, Elsevier. (f) Zn0.5Cd0.5S/NiSe2. Reprinted with permission from Ref. [249]. Copyright 2021, Elsevier. (g) Zn0.5Cd0.5S/OLC. Reprinted with permission from Ref. [250]. Copyright 2020, Elsevier. p-n: (h) ZnxCd1?xS/Co3O4. Reprinted with permission from Ref. [251]. Copyright 2020, Elsevier. (i) Zn0.7Cd0.3S/NiWO4. Reprinted with permission from Ref. [252]. Copyright 2019, Elsevier. (j) Zn0.5Cd0.5S/MCo2O4. Reprinted with permission from Ref. [253]. Copyright 2021, Elsevier.
Fig. 19. Recently reported Z-scheme and S-scheme heterojunction photocatalysts based on ZnxCd1?xS. Z-scheme: (a,b) ZnxCd1?xS/Fe2O3. Reprinted with permission from Ref. [254]. Copyright 2021, Elsevier. S-scheme: (c,d) ZnxCd1?xS/ZnS. Reprinted with permission from Ref. [256]. Copyright 2021, Wiley. (e) ZnxCd1?xS/Co9S8. Reprinted with permission from Ref. [257]. Copyright 2021, Elsevier. (f) ZnxCd1?xS/Co@CoO. Reprinted with permission from Ref. [258]. Copyright 2022, Elsevier.
Fig. 20. ZnIn2S4-based photocatalysts with the optimization strategy of control of morphology and design of structure. (a) Core-shell carbon nanofiber. Reprinted with permission from Ref. [259]. Copyright 2014, American Chemical Society. (b) Octahedron NH2-UiO-66 flower-like microspheres. Reprinted with permission from Ref. [260]. Copyright 2019, American Chemical Society. (c) Pd@NH2-UiO-66 flower-like microspheres. Reprinted with permission from Ref. [261]. Copyright 2021, Elsevier. (d) MOFL hollow tubular. Reprinted with permission from Ref. [96]. Copyright 2021, Elsevier. (e) Hollow structure nanocubes. Reprinted with permission from Ref. [262]. Copyright 2021, Elsevier. (f) Yolk-shelled nanoparticles. Reprinted with permission from Ref. [263]. Copyright 2021, Elsevier.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Doping strategy | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnIn2S4 | nanospheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.045 | 2.6% λ = 420 nm | [ |
rose-like microclusters | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.611 | 11.9% λ = 420 nm | [ | |
persimmon-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.22 | 13.16% λ = 420 nm | [ | |
ultrathin nanosheets | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.94 | 10.1% λ = 420 nm | [ | |
Carbon nanofiber/ZnIn2S4 | core-shell | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.17 | 23.35% λ = 420 nm | [ |
NH2-UiO-66 /ZnIn2S4 | flower-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.199 | — | [ |
Pd@NH2-UiO-66/ZnIn2S4 | flower-like microspheres | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 5.26 | 3.2% λ = 420 nm | [ |
ZnIn2S4 | MOFL hollow tubular | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 28.2 | 22.67% λ = 350 nm | [ |
Cu2MoS4/ ZnIn2S4 | hollow structure nanocubes | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.103 | 7.4% λ = 350 nm | [ |
ZnIn2S4/ NiCo2S4/Co3O4 | yolk-shelled nanoparticles | — | — | — | — | — | 300 W Xe lamp (λ > 400 nm) | 0.103 | 9.2% λ = 400 nm | [ |
ZnIn2S4 | — | Cu-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 430 nm) | 0.758 | 9.6% λ = 420 nm | [ |
— | Mn-doped | — | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 430 nm) | 1.22 | — | [ | |
— | Cu-doped | — | — | — | Ascorbic acid | Solar simulator (AM 1.5G) | 26.2 | 4.76% λ = 420 nm | [ | |
— | Ag-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 6.344 | — | [ | |
— | Nd-doped | — | — | — | Na2S/Na2SO3 | 250 W Xe lamp | 11.38 | — | [ | |
— | Ti-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.685 | — | [ | |
— | Ce-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.46 | 6.56% λ = 380 nm | [ | |
— | Mo-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 4.62 | 14.74% λ = 380 nm | [ | |
— | N-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 11.086 | 16.8% λ = 420 nm | [ | |
— | O-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.12 | — | [ | |
— | Ni/In-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 10.97 | 0.148% λ = 400 nm | [ | |
— | — | S vacancy | — | — | Lactic acid | 300 W Xe lamp (λ = 320-780 nm) | 6.884 | 63.87% λ = 400 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 13.478 | 22.39% λ = 420 nm | [ | |
— | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 1.541 | 49.0% λ = 440 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.4 | 0.16% λ = 420 nm | [ | |
— | — | Zn vacancy | — | — | Methanol | 300 W Xe lamp (λ > 420 nm) | 10.19 | 5.79% λ = 420 nm | [ | |
— | — | In vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 13.4 | — | [ | |
— | — | S vacancy | Ti3C2Tx | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.42 | 40.1% λ = 420 nm | [ | |
— | — | S vacancy | — | — | — | 300 W Xe lamp (λ > 420 nm) | 0.068 | 0.041% λ = 420 nm | [ | |
— | — | — | Pt single-sites | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 17.5 | 50.4% λ = 420 nm | [ | |
— | — | — | Au | — | Benzyl alcohol | 300 W Xe lamp (λ > 420 nm) | 1.6334 | — | [ | |
— | — | — | Au@Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 4.1747 | 6.23% λ = 420 nm | [ | |
— | — | — | Ag0.6Au0.4 | — | Na2S/Na2SO3 | 300 W Xe lamp | 5.4 | 8.06% λ = 420 nm | [ | |
— | — | — | Ag0.25Pd0.75 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.254 | 15.8% λ = 420 nm | [ | |
— | — | — | Ag, α-MnO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.65 | — | [ | |
— | — | — | Pt and BP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.278 | 24.7% λ = 420 nm | [ | |
— | — | — | Ti3C2-QDs and Ti(IV) | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 7.52 | 6.22% λ = 420 nm | [ | |
— | — | — | NiCo2S4 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 3.9 | 0.68% λ = 400 nm | [ | |
— | — | — | Co9S8 and PdS | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 11.407 | 71.2% λ = 420 nm | [ | |
— | — | — | CoP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.775 | 24.1% λ = 420 nm | [ | |
— | — | — | NiSe2 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.487 | 6.1% λ = 420 nm | [ | |
— | — | — | SnSe | — | TEOA | 300 W Xe lamp (λ = 400-800 nm) | 5.656 | 3.58% λ = 420 nm | [ | |
ZnIn2S4/g-C3N4 | — | — | — | 1 wt% Pt | type-I | TEOA | 300 W Xe lamp | 4.854 | — | [ |
ZnIn2S4/g-C3N4 | — | — | — | NiS | type-I | TEOA | 300 W Xe lamp | 5.02 | 30.5% λ = 420 nm | [ |
ZnIn2S4/NaNbO3 | nanorods | — | — | Pt | type-I | TEOA | 300 W Xe lamp | 30.04 | 4.7% λ = 420 nm | [ |
ZnIn2S4/CaTiO3 | nanocubes | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 22.186 | — | [ |
ZnIn2S4/CdIn2S4 | 2D/3D structure | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.67 | 18.73% λ = 420 nm | [ |
ZnIn2S4/Mo2C | — | — | — | — | type-I | TEOA | 300 W Xe lamp AM 1.5G | 40.93 | 71.6% λ = 420 nm | [ |
ZnIn2S4/g-C3N4 | 2D/2D structure | — | — | — | type-II | lactic acid | 300 W Xe lamp (λ > 420 nm) | 10.92 | 10.74% λ = 420 nm | [ |
ZnIn2S4/CdS | 1D/2D structure | — | — | — | type-II | TEOA | 300 W Xe lamp (λ = 350-780 nm) | 5.8 | 0.48% λ = 420 nm | [ |
ZnIn2S4/Ni-Fe LDH | MOF-shelled | — | — | — | Type-II | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.036 | 7.28% λ = 420 nm | [ |
ZnIn2S4/Ti3C2 MXene@TiO2 | — | — | — | Ti3C2 MXene | Type-II | Na2S/Na2SO3 | 300 W Xe lamp | 1.186 | — | [ |
ZnIn2S4/Ag2O | QDs | — | — | 3 wt% Pt | p−n | TEOA | 300 W Xe lamp | 9.337 | 0.9% λ = 420 nm | [ |
ZnIn2S4/CoFe2O4 | — | — | — | — | p−n | TEOA | 250 W Xe lamp (λ > 420 nm) | 0.8 | 5% λ = 420 nm | [ |
ZnIn2S4/CuS | 2D/2D structure | — | — | — | p−n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 7.91 | 2.52% λ = 420 nm | [ |
ZnIn2S4/MoS2 | 2D/2D structure | — | — | — | p−n | lactic acid | 300 W Xe lamp | 151.42 | 13.67% λ = 420 nm | [ |
ZnIn2S4/NiTiO3 | — | — | — | — | Z-scheme | TEOA | 3×300 W LED (λ > 420 nm) | 4.43 | 4.39% λ = 450 nm | [ |
ZnIn2S4/CNTs/ RP | — | — | S vacancy | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp | 1.634 | — | [ |
ZnIn2S4/Cu3P | — | — | — | 0.5 wt% Pt | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.56 | 22.3% λ = 420 nm | [ |
ZnIn2S4/ H2Ta2O6 | octahedral | — | — | 1 wt% Pt | Z-scheme | TEOA | 300 W Xe lamp AM 1.5G | 3.217 | 5.2% λ = 420 nm | [ |
ZnIn2S4/ MxMoO3 | nanobelts | — | — | — | Z-scheme | TEOA | 300 W LED (λ > 420 nm) | 5.9 | 32.95% λ = 420 nm | [ |
ZnIn2S4/Au/TiO2 | urchin-like | — | — | — | Z-scheme | — | 300 W Xe lamp | 0.1863 | — | [ |
ZnIn2S4/BiVO4 | QDs | — | — | Ti3C2 MXene | Z-scheme | — | 300 W Xe lamp (λ >400 nm) | 0.10267 | 2.4% λ = 410 nm | [ |
ZnIn2S4/BiOBr | — | — | — | 1 wt% Pt | Z-scheme | — | 300 W LED (λ > 420 nm) | 0.628 | 8.57% λ = 420 nm | [ |
ZnIn2S4/perylene-dicarboximide | — | — | — | — | Z-scheme | — | 300 W Xe lamp (λ > 400 nm) | 0.2754 | 10.69% λ = 410 nm | [ |
ZnIn2S4/Co3O4 | Core-shell | — | — | — | S-scheme | TEOA | 300 W Xe lamp (λ = 420-780 nm) | 6.7 | 11% λ = 420 nm | [ |
ZnIn2S4/MoO3 | — | Mo- doped | — | — | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 5.5 | 4.82% λ = 420 nm | [ |
ZnIn2S4/ SnNb2O6 | — | Ni- doped | — | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.807 | 7.8% λ = 420 nm | [ |
ZnIn2S4/TiO2 | — | O- doped | O vacancy | — | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.585 | — | [ |
ZnIn2S4/TiO2 | 1D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp | 6.03 | 10.49% λ = 420 nm | [ |
ZnIn2S4/ZnWO4 | — | — | — | — | S-scheme | Methanol | 300 W Xe lamp | 4.925 | — | [ |
ZnIn2S4/CdS | 2D/2D structure | — | — | Ti3C2 MXene | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.93 | 0.79% λ = 420 nm | [ |
ZnIn2S4/ Bi4Ti3O12 | 2D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 19.8 | 11% λ = 420 nm | [ |
Table 4 PHE performances of ZnIn2S4-based photocatalysts optimized using (1) engineering of morphology and structure; (2) doping; (3) introduction of vacancy; (4) loading of cocatalyst via Schottky junction formation, and (5) heterojunction construction.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Doping strategy | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnIn2S4 | nanospheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.045 | 2.6% λ = 420 nm | [ |
rose-like microclusters | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.611 | 11.9% λ = 420 nm | [ | |
persimmon-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.22 | 13.16% λ = 420 nm | [ | |
ultrathin nanosheets | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.94 | 10.1% λ = 420 nm | [ | |
Carbon nanofiber/ZnIn2S4 | core-shell | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.17 | 23.35% λ = 420 nm | [ |
NH2-UiO-66 /ZnIn2S4 | flower-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.199 | — | [ |
Pd@NH2-UiO-66/ZnIn2S4 | flower-like microspheres | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 5.26 | 3.2% λ = 420 nm | [ |
ZnIn2S4 | MOFL hollow tubular | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 28.2 | 22.67% λ = 350 nm | [ |
Cu2MoS4/ ZnIn2S4 | hollow structure nanocubes | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.103 | 7.4% λ = 350 nm | [ |
ZnIn2S4/ NiCo2S4/Co3O4 | yolk-shelled nanoparticles | — | — | — | — | — | 300 W Xe lamp (λ > 400 nm) | 0.103 | 9.2% λ = 400 nm | [ |
ZnIn2S4 | — | Cu-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 430 nm) | 0.758 | 9.6% λ = 420 nm | [ |
— | Mn-doped | — | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 430 nm) | 1.22 | — | [ | |
— | Cu-doped | — | — | — | Ascorbic acid | Solar simulator (AM 1.5G) | 26.2 | 4.76% λ = 420 nm | [ | |
— | Ag-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 6.344 | — | [ | |
— | Nd-doped | — | — | — | Na2S/Na2SO3 | 250 W Xe lamp | 11.38 | — | [ | |
— | Ti-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.685 | — | [ | |
— | Ce-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.46 | 6.56% λ = 380 nm | [ | |
— | Mo-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 4.62 | 14.74% λ = 380 nm | [ | |
— | N-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 11.086 | 16.8% λ = 420 nm | [ | |
— | O-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.12 | — | [ | |
— | Ni/In-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 10.97 | 0.148% λ = 400 nm | [ | |
— | — | S vacancy | — | — | Lactic acid | 300 W Xe lamp (λ = 320-780 nm) | 6.884 | 63.87% λ = 400 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 13.478 | 22.39% λ = 420 nm | [ | |
— | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 1.541 | 49.0% λ = 440 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.4 | 0.16% λ = 420 nm | [ | |
— | — | Zn vacancy | — | — | Methanol | 300 W Xe lamp (λ > 420 nm) | 10.19 | 5.79% λ = 420 nm | [ | |
— | — | In vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 13.4 | — | [ | |
— | — | S vacancy | Ti3C2Tx | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.42 | 40.1% λ = 420 nm | [ | |
— | — | S vacancy | — | — | — | 300 W Xe lamp (λ > 420 nm) | 0.068 | 0.041% λ = 420 nm | [ | |
— | — | — | Pt single-sites | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 17.5 | 50.4% λ = 420 nm | [ | |
— | — | — | Au | — | Benzyl alcohol | 300 W Xe lamp (λ > 420 nm) | 1.6334 | — | [ | |
— | — | — | Au@Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 4.1747 | 6.23% λ = 420 nm | [ | |
— | — | — | Ag0.6Au0.4 | — | Na2S/Na2SO3 | 300 W Xe lamp | 5.4 | 8.06% λ = 420 nm | [ | |
— | — | — | Ag0.25Pd0.75 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.254 | 15.8% λ = 420 nm | [ | |
— | — | — | Ag, α-MnO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.65 | — | [ | |
— | — | — | Pt and BP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.278 | 24.7% λ = 420 nm | [ | |
— | — | — | Ti3C2-QDs and Ti(IV) | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 7.52 | 6.22% λ = 420 nm | [ | |
— | — | — | NiCo2S4 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 3.9 | 0.68% λ = 400 nm | [ | |
— | — | — | Co9S8 and PdS | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 11.407 | 71.2% λ = 420 nm | [ | |
— | — | — | CoP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.775 | 24.1% λ = 420 nm | [ | |
— | — | — | NiSe2 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.487 | 6.1% λ = 420 nm | [ | |
— | — | — | SnSe | — | TEOA | 300 W Xe lamp (λ = 400-800 nm) | 5.656 | 3.58% λ = 420 nm | [ | |
ZnIn2S4/g-C3N4 | — | — | — | 1 wt% Pt | type-I | TEOA | 300 W Xe lamp | 4.854 | — | [ |
ZnIn2S4/g-C3N4 | — | — | — | NiS | type-I | TEOA | 300 W Xe lamp | 5.02 | 30.5% λ = 420 nm | [ |
ZnIn2S4/NaNbO3 | nanorods | — | — | Pt | type-I | TEOA | 300 W Xe lamp | 30.04 | 4.7% λ = 420 nm | [ |
ZnIn2S4/CaTiO3 | nanocubes | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 22.186 | — | [ |
ZnIn2S4/CdIn2S4 | 2D/3D structure | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.67 | 18.73% λ = 420 nm | [ |
ZnIn2S4/Mo2C | — | — | — | — | type-I | TEOA | 300 W Xe lamp AM 1.5G | 40.93 | 71.6% λ = 420 nm | [ |
ZnIn2S4/g-C3N4 | 2D/2D structure | — | — | — | type-II | lactic acid | 300 W Xe lamp (λ > 420 nm) | 10.92 | 10.74% λ = 420 nm | [ |
ZnIn2S4/CdS | 1D/2D structure | — | — | — | type-II | TEOA | 300 W Xe lamp (λ = 350-780 nm) | 5.8 | 0.48% λ = 420 nm | [ |
ZnIn2S4/Ni-Fe LDH | MOF-shelled | — | — | — | Type-II | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.036 | 7.28% λ = 420 nm | [ |
ZnIn2S4/Ti3C2 MXene@TiO2 | — | — | — | Ti3C2 MXene | Type-II | Na2S/Na2SO3 | 300 W Xe lamp | 1.186 | — | [ |
ZnIn2S4/Ag2O | QDs | — | — | 3 wt% Pt | p−n | TEOA | 300 W Xe lamp | 9.337 | 0.9% λ = 420 nm | [ |
ZnIn2S4/CoFe2O4 | — | — | — | — | p−n | TEOA | 250 W Xe lamp (λ > 420 nm) | 0.8 | 5% λ = 420 nm | [ |
ZnIn2S4/CuS | 2D/2D structure | — | — | — | p−n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 7.91 | 2.52% λ = 420 nm | [ |
ZnIn2S4/MoS2 | 2D/2D structure | — | — | — | p−n | lactic acid | 300 W Xe lamp | 151.42 | 13.67% λ = 420 nm | [ |
ZnIn2S4/NiTiO3 | — | — | — | — | Z-scheme | TEOA | 3×300 W LED (λ > 420 nm) | 4.43 | 4.39% λ = 450 nm | [ |
ZnIn2S4/CNTs/ RP | — | — | S vacancy | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp | 1.634 | — | [ |
ZnIn2S4/Cu3P | — | — | — | 0.5 wt% Pt | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.56 | 22.3% λ = 420 nm | [ |
ZnIn2S4/ H2Ta2O6 | octahedral | — | — | 1 wt% Pt | Z-scheme | TEOA | 300 W Xe lamp AM 1.5G | 3.217 | 5.2% λ = 420 nm | [ |
ZnIn2S4/ MxMoO3 | nanobelts | — | — | — | Z-scheme | TEOA | 300 W LED (λ > 420 nm) | 5.9 | 32.95% λ = 420 nm | [ |
ZnIn2S4/Au/TiO2 | urchin-like | — | — | — | Z-scheme | — | 300 W Xe lamp | 0.1863 | — | [ |
ZnIn2S4/BiVO4 | QDs | — | — | Ti3C2 MXene | Z-scheme | — | 300 W Xe lamp (λ >400 nm) | 0.10267 | 2.4% λ = 410 nm | [ |
ZnIn2S4/BiOBr | — | — | — | 1 wt% Pt | Z-scheme | — | 300 W LED (λ > 420 nm) | 0.628 | 8.57% λ = 420 nm | [ |
ZnIn2S4/perylene-dicarboximide | — | — | — | — | Z-scheme | — | 300 W Xe lamp (λ > 400 nm) | 0.2754 | 10.69% λ = 410 nm | [ |
ZnIn2S4/Co3O4 | Core-shell | — | — | — | S-scheme | TEOA | 300 W Xe lamp (λ = 420-780 nm) | 6.7 | 11% λ = 420 nm | [ |
ZnIn2S4/MoO3 | — | Mo- doped | — | — | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 5.5 | 4.82% λ = 420 nm | [ |
ZnIn2S4/ SnNb2O6 | — | Ni- doped | — | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.807 | 7.8% λ = 420 nm | [ |
ZnIn2S4/TiO2 | — | O- doped | O vacancy | — | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.585 | — | [ |
ZnIn2S4/TiO2 | 1D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp | 6.03 | 10.49% λ = 420 nm | [ |
ZnIn2S4/ZnWO4 | — | — | — | — | S-scheme | Methanol | 300 W Xe lamp | 4.925 | — | [ |
ZnIn2S4/CdS | 2D/2D structure | — | — | Ti3C2 MXene | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.93 | 0.79% λ = 420 nm | [ |
ZnIn2S4/ Bi4Ti3O12 | 2D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 19.8 | 11% λ = 420 nm | [ |
Fig. 21. Mn-, Cr-, Fe-, and Co-doped ZnIn2S4 photocatalysts: established band structures (a), UV-vis (b), and PL spectra (c). Reprinted with permission from Ref. [265]. Copyright 2011, Elsevier. Illustration of the PHE process in (d) Cu-doped ZnIn2S4. Reprinted with permission from Ref. [102]. Copyright 2019, Wiley. (e) Mo-doped ZnIn2S4. Reprinted with permission from Ref. [270]. Copyright 2020, Wiley. (f) Ti-doped ZnIn2S4. Reprinted with permission from Ref. [268]. Copyright 2020, Royal Society of Chemistry. (g) Nd-doped ZnIn2S4. Reprinted with permission from Ref. [267]. Copyright 2020, Elsevier.
Fig. 22. (a) Hydrogen production mechanism of ZnIn2S4 photocatalyst with S-rich vacancies. Reprinted with permission from Ref. [273]. Copyright 2018, American Chemical Society. (b) Band structures and corresponding PHE mechanism illustration of bilayer ZnIn2S4 (left), monolayer ZnIn2S4 (middle), and monolayer ZnIn2S4 with S vacancies. Reprinted with permission from Ref. [274]. Copyright 2019, Elsevier. (c) Charger transfer routes of ZnIn2S4 photocatalyst with Zn vacancies. Reprinted with permission from Ref. [276]. Copyright 2022, Elsevier. (d) Kinetics process simulation of charges in S-vacancy-controlled ZnIn2S4 photocatalyst. Reprinted with permission from Ref. [279]. Copyright 2021, Elsevier. (e) Charge transfer behaviors of gradient H migration on ZnIn2S4 photocatalyst with S vacancies. Reprinted with permission from Ref. [278]. Copyright 2021, American Chemical Society. (f) PHE mechanism illustration of ZnIn2S4 photocatalyst with rhombohedral phase and S vacancies. Reprinted with permission from Ref. [280]. Copyright 2022, American Chemical Society.
Fig. 23. ZnIn2S4-based photocatalyst with the loading of cocatalyst of noble-metal, noble-metal-based alloy, and non-noble-metal cocatalysts. (a) DFT-calculated charge difference surface of ZnIn2S4 photocatalyst with Pt single-sites loading. (b) Band structure difference between pure ZnIn2S4 and Pt single-sites loaded ZnIn2S4. Reprinted with permission from Ref. [281]. Copyright 2022, Springer. PHE mechanisms and charge transfer behaviors of recently developed ZnIn2S4-based photocatalysts: (c) Au/ZnIn2S4. Reprinted with permission from Ref. [282]. Copyright 2019, Elsevier. (d) Ag0.25Pd0.75/ZnIn2S4. Reprinted with the permission from Ref. [283]. Copyright 2022, Elsevier. (e) CoP/ZnIn2S4. Reprinted with permission from Ref. [284]. Copyright 2020, Wiley. (f) Ti3C2-QDs/ZnIn2S4. Reprinted with permission from Ref. [285]. Copyright 2022, MDPI.
Fig. 24. Representative ZnIn2S4-based heterojunction photocatalysts. (a) Type-I ZnIn2S4/g-C3N4. Reprinted with permission from Ref. [286]. Copyright 2020, Elsevier. (b) Type-II ZnIn2S4/g-C3N4. Reprinted with permission from Ref. [287]. Copyright 2021, Wiley. (c) p-n ZnIn2S4/CoFe2O4. Reprinted with permission from Ref. [288]. Copyright 2021, Elsevier. (d) Z-scheme ZnIn2S4/Au/TiO2. Reprinted with permission from Ref. [289]. (e) Z-scheme ZnIn2S4/BiVO4. Reprinted with permission from Ref. [290]. Copyright 2020, Elsevier. (f) S-scheme ZnIn2S4/SnNb2O6. Reprinted with permission from Ref. [291]. Copyright 2022, American Chemical Society.
|
[1] | Yunchao Zhang, Jinkang Pan, Xiang Ni, Feiqi Mo, Yuanguo Xu, Pengyu Dong. Revealing the dynamics of charge carriers in organic/inorganic hybrid FS-COF/WO3 S-scheme heterojunction for boosted photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 250-263. |
[2] | Zhengyu Zhou, Zhiliang Jin. Custom exposed crystal facets: Synergistic effect of optimum crystal facet anisotropy and Ohmic heterojunction boosting photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2025, 74(7): 294-307. |
[3] | Zihao Zhang, Jiaming Zhang, Haifeng Wang, Meng Liu, Yao Xu, Kaiwei Liu, Boyang Zhang, Ke Shi, Jifang Zhang, Guijun Ma. Facet-oriented surface modification for enhancing photocatalytic hydrogen production on Sm2Ti2O5S2 nanosheets [J]. Chinese Journal of Catalysis, 2025, 74(7): 341-351. |
[4] | Xianglin Xiang, Bei Cheng, Bicheng Zhu, Chuanjia Jiang, Guijie Liang. High-entropy alloy nanocrystals boosting photocatalytic hydrogen evolution coupled with selective oxidation of cinnamyl alcohol [J]. Chinese Journal of Catalysis, 2025, 68(1): 326-335. |
[5] | Ting Zhao, Bingbing Gong, Guancheng Xu, Jiahui Jiang, Li Zhang. In situ surface reconstruction of heterostructure Ni2P/CoP/FeP4 nanowires network catalyst for high-current-density overall water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 269-280. |
[6] | Junxian Bai, Rongchen Shen, Guijie Liang, Chaochao Qin, Difa Xu, Haobin Hu, Xin Li. Topology-induced local electric polarization in 2D thiophene-based covalent organic frameworks for boosting photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 225-236. |
[7] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[8] | Tingting Yang, Jing Wang, Zhongliao Wang, Jinfeng Zhang, Kai Dai. Ipolymer Cd3(C3N3S3)2/Zn3(C3N3S3)2 S-scheme heterojunction enhances photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 157-167. |
[9] | Yuanyong Huang, Hong Yang, Xinyu Lu, Min Chen, Weidong Shi. Near infrared-driven photocatalytic overall water splitting: Progress and perspective [J]. Chinese Journal of Catalysis, 2024, 58(3): 105-122. |
[10] | Jinchang Xu, Yongqi Jian, Guang-Qiang Yu, Wanli Liang, Junmin Zhu, Muzi Yang, Jian Chen, Fangyan Xie, Yanshuo Jin, Nan Wang, Xi-Bo Li, Hui Meng. Manipulating the spin configuration by topochemical transformation for optimized intermediates adsorption ability in oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2024, 66(11): 195-211. |
[11] | Ming Wang, Yaling Li, Dengxin Yan, Hui Hu, Yujie Song, Xiaofang Su, Jiamin Sun, Songtao Xiao, Yanan Gao. Dipole polarization modulating of vinylene-linked covalent organic frameworks for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 65(10): 103-112. |
[12] | Jun Xu, Ying Luo, Qiaoqi Guo, Wenzheng Sun, Shanshan Chen, Zheng Wang, Hong He. Mg-doped SrTaO2N as a visible-light-driven H2-evolution photocatalyst for accelerated Z-scheme overall water splitting [J]. Chinese Journal of Catalysis, 2024, 65(10): 70-78. |
[13] | Zhihan Yu, Chen Guan, Xiaoyang Yue, Quanjun Xiang. Infiltration of C-ring into crystalline carbon nitride S-scheme homojunction for photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2023, 50(7): 361-371. |
[14] | Zhidong Wei, Jiawei Yan, Weiqi Guo, Wenfeng Shangguan. Nanoscale lamination effect by nitrogen-deficient polymeric carbon nitride growth on polyhedral SrTiO3 for photocatalytic overall water splitting: Synergy mechanism of internal electrical field modulation [J]. Chinese Journal of Catalysis, 2023, 48(5): 279-289. |
[15] | Dan Zhang, Yue Shi, Xilei Chen, Jianping Lai, Bolong Huang, Lei Wang. High-entropy alloy metallene for highly efficient overall water splitting in acidic media [J]. Chinese Journal of Catalysis, 2023, 45(2): 174-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||