Chinese Journal of Catalysis ›› 2025, Vol. 77: 236-249.DOI: 10.1016/S1872-2067(25)64778-4
• Articles • Previous Articles
Hua Yanga,1, Dingyanyan Zhoub,1, Kaige Tiana, Lingjiang Konga, Pengfei Anc, Jing Zhangc, Yujin Jib, Youyong Lib,*(), Junqing Yana,*(
)
Received:
2025-04-23
Accepted:
2025-06-27
Online:
2025-10-18
Published:
2025-10-05
Contact:
*E-mail: junqingyan@snnu.edu.cn (J. Yan), yyli@suda.edu.cn (Y. Li).
About author:
1Contributed equally to this work.
Supported by:
Hua Yang, Dingyanyan Zhou, Kaige Tian, Lingjiang Kong, Pengfei An, Jing Zhang, Yujin Ji, Youyong Li, Junqing Yan. Dual-hole extraction strategy promotes photoelectrochemical water splitting of bismuth vanadate photoanode[J]. Chinese Journal of Catalysis, 2025, 77: 236-249.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64778-4
Fig. 1. (a) Schematic synthesis of a CoFe2O4-Cs-BiVO4 photoanode. (b) XRD patterns of all photoanodes. (c) Magnified view of the region highlighted in inset (b). (d) Raman spectrum of all photoanodes.
Fig. 2. SEM images of BiVO4 (a), Cs-BiVO4 (b), and CoFe2O4-Cs-BiVO4 (c). TEM images of BiVO4 (d), Cs-BiVO4 (e), and CoFe2O4-Cs-BiVO4 (f). Inset in (d-f) the corresponding selective electron diffraction. (g) AC-TEM image of Cs-BiVO4. (h) EDS element mapping (Bi, V, O, Cs, Co, and Fe) of the CoFe2O4-Cs-BiVO4 photoanode.
Fig. 3. (a) XPS spectra of the Cs 3d energy level of CoFe2O4-Cs-BiVO4. (b) XPS spectra of the Co 2p energy level of CoFe2O4-Cs-BiVO4. (c) Bi L3-edge XANES spectra of a Bi-foil, Bi-BiVO4, and Bi-Cs-BiVO4. (d) R-space Bi L3-edge EXAFS spectra of a Bi foil, Bi-BiVO4, and Bi-Cs-BiVO4. (e) V K-edge XANES spectra of a V foil, V-BiVO4, and V-Cs-BiVO4. (f) R-space V K-edge EXAFS spectra of a V foil, V-BiVO4, and V-Cs-BiVO4. (g) WT-EXANES of a Bi-foil. (h) WT-EXANES of Bi-BiVO4. (i) WT-EXANES of Bi-Cs-BiVO4.
Fig. 4. (a) LSV curves of all photoanodes. (b) ABPE curves of all photoanodes. (c) IPCE curves of all photoanodes. (d) Photocurrent density vs. time curves at 1.23 V vs. RHE for all photoanodes. (e) Comparison of the photocurrents of CoFe2O4-Cs-BiVO4 photoanodes and other BiVO4-based photoanodes. (f) UV-vis absorption spectra of all photoanodes. (g) Bulk charge separation efficiency of all photoanodes. (h) Surface charge injection efficiency of all photoanodes.
Fig. 5. (a) Nyquist plots at 1.23 V vs. RHE for all photoanodes. (b) Mott-Schottky plots. (c) ECSA evaluation. (d) LSV curves in a dark state. (e) Tafel plots of all photoanodes. (f) PL spectrum (excitation at 375 nm). (g) Transient photocurrent curves of all photoanodes. (h) Voltage differences (ΔVOC) based on open circuit photovoltage tests. (i) Transfer time of photoinduced charge carriers produced by all photoanodes in a 1.0 mol L-1 borate buffer solution (pH = 9.2).
Fig. 6. (a) Bi 4f XPS spectrum of CoFe2O4-Cs-BiVO4 following a 15-h stability test. (b) V 2p XPS spectrum of CoFe2O4-Cs-BiVO4 following a 15-h stability test. (c) O 1s XPS spectrum of CoFe2O4-Cs-BiVO4 following 15-h stability test. (d) Cs 3d XPS spectrum of CoFe2O4-Cs-BiVO4 following a 15-h stability test. (e) Fe 2p XPS spectrum of CoFe2O4-Cs-BiVO4 following a 15-h stability test. (f) Co 2p XPS spectrum of CoFe2O4-Cs-BiVO4 following a 15-h stability test.
Fig. 7. DOS diagrams of (a) Cs-BiVO4 and (b) CoFe2O4-BiVO4 photoanodes. Charge density difference diagrams of (c) Cs-BiVO4 and (d) CoFe2O4-Cs-BiVO4 photoanodes. Illustrations of the charge transfer process for (e) BiVO4 and (f) CoFe2O4-Cs-BiVO4 photoanodes.
|
[1] | Sui Qi, Li Hui, Tao Chen, Li Ran, Gao Yujie, Yang Tingting, Zheng Hongshuai, Xia Lixin, Li Fei, Jiang Yi. Exploring internal interface bonding and multi-metal synergy for boosting photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2025, 75(8): 115-124. |
[2] | Wenjie Yu, Chao Feng, Ronghua Li, Beibei Zhang, Yanbo Li. Recent advances in tantalum nitride for photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2025, 68(1): 51-82. |
[3] | Wei Xu, Chao Zhen, Huaze Zhu, Tingting Yao, Jianhang Qiu, Yan Liang, Shuo Bai, Chunlin Chen, Hui-Ming Cheng, Gang Liu. A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 144-153. |
[4] | Chao Feng, Yanbo Li. Self-healing mechanisms toward stable photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 158-170. |
[5] | Fan-Lin Zeng, Hu-Lin Zhu, Ru-Nan Wang, Xiao-Ya Yuan, Kai Sun, Ling-Bo Qu, Xiao-Lan Chen, Bing Yu. Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)-H bonds [J]. Chinese Journal of Catalysis, 2023, 46(3): 157-166. |
[6] | Jinman Yang, Xingwang Zhu, Qing Yu, Minqiang He, Wei Zhang, Zhao Mo, Junjie Yuan, Yuanbin She, Hui Xu, Huaming Li. Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion [J]. Chinese Journal of Catalysis, 2022, 43(5): 1286-1294. |
[7] | Zhiming Zhou, Jinjin Chen, Qinlong Wang, Xingxing Jiang, Yan Shen. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode [J]. Chinese Journal of Catalysis, 2022, 43(2): 433-441. |
[8] | Jiayue Rong, Zhenzhen Wang, Jiaqi Lv, Ming Fan, Ruifeng Chong, Zhixian Chang. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting [J]. Chinese Journal of Catalysis, 2021, 42(11): 1999-2009. |
[9] | Yang Li, Ningsi Zhang, Changhao Liu, Yuanming Zhang, Xiaoming Xu, Wenjing Wang, Jianyong Feng, Zhaosheng Li, Zhigang Zou. Metastable-phase β-Fe2O3 photoanodes for solar water splitting with durability exceeding 100 h [J]. Chinese Journal of Catalysis, 2021, 42(11): 1992-1998. |
[10] | Shaoce Zhang, Zhifeng Liu, Weiguo Yan, Zhengang Guo, Mengnan Ruan. Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2020, 41(12): 1884-1893. |
[11] | Zhifeng Liu, Xue Lu. Multifarious function layers photoanode based on g-C3N4 for photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2018, 39(9): 1527-1533. |
[12] | Qizhao Wang, Tengjiao Niu, Lei Wang, Jingwei Huang, Houde She. NiFe layered double-hydroxide nanoparticles for efficiently enhancing performance of BiVO4 photoanode in photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2018, 39(4): 613-618. |
[13] | Yuanxing Fang, Yiwen Ma, Xinchen Wang. Efficient development of Type-II TiO2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance [J]. Chinese Journal of Catalysis, 2018, 39(3): 438-445. |
[14] | Chunjing Shi, Xiaoli Dong, Xiuying Wang, Hongchao Ma, Xiufang Zhang. Ag nanoparticles deposited on oxygen-vacancy-containing BiVO4 for enhanced near-infrared photocatalytic activity [J]. Chinese Journal of Catalysis, 2018, 39(1): 128-137. |
[15] | Ling Qian, Pengfei Liu, Le Zhang, Chongwu Wang, Shuang Yang, Lirong Zheng, Aiping Chen, Huagui Yang. Amorphous ferric oxide as a hole-extraction and transfer layer on nanoporous bismuth vanadate photoanode for water oxidation [J]. Chinese Journal of Catalysis, 2017, 38(6): 1045-1051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||