Chinese Journal of Catalysis ›› 2013, Vol. 34 ›› Issue (5): 993-1001.DOI: 10.1016/S1872-2067(11)60522-6
• Articles • Previous Articles Next Articles
DU Xianlonga,b, LIU Yongmeia, WANG Jianqiangb, CAO Yonga, FAN Kangniana
Received:
2012-11-17
Revised:
2013-05-20
Online:
2013-05-06
Published:
2013-05-06
Supported by:
This work was supported by the National Natural Science Foundation of China (21273044)), the Program for New Century Excellent Talents in University (NCET-09-0305), and Science & Technology Commission of Shanghai Municipality (08DZ2270 500).
DU Xianlong, LIU Yongmei, WANG Jianqiang, CAO Yong, FAN Kangnian. Catalytic conversion of biomass-derived levulinic acid into ?-valerolactone using iridium nanoparticles supported on carbon nanotubes[J]. Chinese Journal of Catalysis, 2013, 34(5): 993-1001.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(11)60522-6
[1] Kamm B, Grube P R, Kamm M. Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. Vol. 1. Weinheim: Wiley-VCH, 2006 [2] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411 [3] Liu Z, Feng G, Pan Ch Y, Li W, Chen P, Lou H, Zheng X M. Chin J Catal (刘镇, 冯刚, 潘春燕, 李望, 陈平, 楼辉, 郑小明. 催化学报), 2012, 33: 1696 [4] Shuttleworth P, Budarin V, Gronnow M, Clark J H, Luque R. J Nat Gas Chem, 2012, 21: 270 [5] Luque R, Pineada A, Colmenares J C, Campelo J M, Romero A A, Serrano-Ruiz J C, Cabeza L F, Got-Gores J. J Nat Gas Chem, 2012, 21: 246 [6] Clause P, Vogel H. Chem Eng Technol, 2008, 31: 678 [7] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539 [8] Bond J Q, Alonso D M, West R M, Dumesic J A. Langmuir, 2010, 26: 16291 [9] Horváth I T. Green Chem, 2008, 10: 1024 [10] Dunlop A P, Madden J W. US Patent 2786852. 1957 [11] Horváth I T, Methdi H, Fábos V, Boda L, Mika L T. Green Chem, 2008, 10: 238 [12] Fitzpatrick S W. US Patent 5608105. 1997 [13] Bozell J J, Elliott D C, Wang Y, Neuenscwander G G, Fitzpatrick S W, Bilski R J, Jarnefeld J L. Resour Conserv Recycl, 2000, 28: 227 [14] Schuette H A, Thomas R W. J Am Chem Soc, 1930, 52: 3010 [15] Christian R V, Brown H D, Hixon R M. J Am Chem Soc, 1947, 69: 1961 [16] Yan Z P, Liu L, Liu S J. Energy Fuels, 2009, 23: 3853 [17] Galletti A M R, Antonetti C, Luise V D, Martinelli M. Green Chem, 2012, 14: 688 [18] Mehdi H, Fábos V, Tuba R, Bodor A, Mika L T, Horváth I T, Top Catal, 2008, 48: 49 [19] Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Green Chem, 2009, 11: 1247 [20] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem Commun, 2007: 4632 [21] Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q X. ChemSusChem, 2010, 3: 1172 [22] Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Appl Catal B, 2010, 100: 184 [23] Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y, Fan K N. Angew Chem, Int Ed, 2011, 50: 7815 [24] Osakada K, Ikariya T, Yoshikawa S. J Organomet Chem, 1982, 231: 79 [25] Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew Chem, Int Ed, 2009, 48: 6529 [26] Pan X L, Fan Z L, Chen W, Ding Y J, Luo H Y, Bao X H, Nat Mater, 2007, 6: 507 [27] Chen W, Fan Z L, Pan X L, Bao X H, J Am Chem Soc, 2008, 130: 9414 [28] Debruyn M, Coman S, Bota R, Parvulescu V I, De Vos D E, Jacobs P A. Angew Chem, Int Ed, 2003, 42: 5333 [29] Rojas H, Borda G, Martínez J J, Valencia J, Reyes P. J Mol Catal A, 2008, 286: 70 [30] Chen P, Zhang H B, Lin G D, Hong Q, Tsai K R. Carbon, 1997, 35: 1495 [31] Zhang Y, Zhang H B, Lin G D, Chen P, Yuan Y Z, Tsai K R. Appl Catal A, 1999, 187: 213 [32] Moulder J F, Stickle W F, Sobol P E, Bomben K D. Handbook of X-ray Photoelectroscope. Eden Prairie: Physical Electronics, Inc., 1995 [33] Kobayashi S, Manabe K. Acc Chem Res, 2002, 35: 209 [34] Girisuta B, Janssen L P B M, Heeres H J. Chem Eng Re Des, 2006, 84: 339 [35] López-De Jesús Y M, Vicente A, Lafaye G, Marécot P, Williams C T. J Phys Chem C, 2008, 112: 13837 [36] Silvennoinen R J, Jylhä O J T, Lindblad M, Österholm H, Krause A O I. Catal Lett, 2007, 114: 135 [37] Sugii T, Kamiya Y, Okuhara T. Appl Catal A, 2006, 312: 45 [38] Planeix J M, Coustel N, Coq B, Brotons V, Kumbhar P S, Dutartre R, Geneste P, Bernier P, Ajayan P M. J Am Chem Soc, 1994, 116: 7935 [39] Yoon B, Wai C M. J Am Chem Soc, 2005, 127: 17174 [40] Zhang H B, Dong X, Lin G D, Liang X L, Li H Y. Chem Commun, 2005: 5094 [41] Kang J C, Zhang S L, Zhang Q H, Wang Y. Angew Chem, Int Ed, 2009, 48: 2565 [42] Serp P, Corrias M, Kalck P. Appl Catal A, 2003, 253: 337 [43] Timokhin B V, Baransky V A, Eliseeva G D. Russ Chem Rev, 1999, 68: 73 [44] Kitano M, Tanimoto F, Okabashi M. Chem Econ Eng Rev, 1975, 7: 25 [45] Loges B, Boddien A, Junge H, Beller M. Angew Chem, Int Ed, 2008, 47: 3962 [46] Boddien A, Loges B, Junge H, Beller M. ChemSusChem, 2008, 1: 751 [47] Enthaler S. ChemSusChem, 2008, 1: 801 [48] Reutemann W, Kieczka H. Formic Acid in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2005 |
[1] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[2] | Jiachen Sun, Sai Chen, Donglong Fu, Wei Wang, Xianhui Wang, Guodong Sun, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Role of oxygen transfer and surface reaction in catalytic performance of VOx-Ce1‒xZrxO2 for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 52(9): 217-227. |
[3] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
[4] | Shiyao Liu, Yutong Gong, Xiao Yang, Nannan Zhang, Huibin Liu, Changhai Liang, Xiao Chen. Acid-durable intermetallic CaNi2Si2 catalyst with electron-rich Ni sites for aqueous phase hydrogenation of unsaturated organic anhydrides/acids [J]. Chinese Journal of Catalysis, 2023, 50(7): 260-272. |
[5] | Xianquan Li, Jifeng Pang, Yujia Zhao, Pengfei Wu, Wenguang Yu, Peifang Yan, Yang Su, Mingyuan Zheng. Ethanol dehydrogenation to acetaldehyde over a Cuδ+-based Cu-MFI catalyst [J]. Chinese Journal of Catalysis, 2023, 49(6): 91-101. |
[6] | Si-Yuan Xia, Qi-Yuan Li, Shi-Nan Zhang, Dong Xu, Xiu Lin, Lu-Han Sun, Jingsan Xu, Jie-Sheng Chen, Guo-Dong Li, Xin-Hao Li. Size-dependent electronic interface effect of Pd nanocube-based heterojunctions on universally boosting phenol hydrogenation reactions [J]. Chinese Journal of Catalysis, 2023, 49(6): 180-187. |
[7] | Yanan Xing, Leilei Kang, Jingyuan Ma, Qike Jiang, Yang Su, Shengxin Zhang, Xiaoyan Xu, Lin Li, Aiqin Wang, Zhi-Pan Liu, Sicong Ma, Xiao Yan Liu, Tao Zhang. Sn1Pt single-atom alloy evolved stable PtSn/nano-Al2O3 catalyst for propane dehydrogenation [J]. Chinese Journal of Catalysis, 2023, 48(5): 164-174. |
[8] | Enara Fernandez, Laura Santamaria, Irati García, Maider Amutio, Maite Artetxe, Gartzen Lopez, Javier Bilbao, Martin Olazar. Elucidating coke formation and evolution in the catalytic steam reforming of biomass pyrolysis volatiles at different fixed bed locations [J]. Chinese Journal of Catalysis, 2023, 48(5): 101-116. |
[9] | Fengwei Zhang, Hefang Guo, Mengmeng Liu, Yang Zhao, Feng Hong, Jingjing Li, Zhengping Dong, Botao Qiao. Enhancing the chemoselective hydrogenation of nitroarenes: Designing a novel surface-strained carbon-based Pt nanocatalyst [J]. Chinese Journal of Catalysis, 2023, 48(5): 195-204. |
[10] | Duozheng Ma, Xiangcheng Li, Chuang Liu, Caroline Versluis, Yingchun Ye, Zhendong Wang, Eelco T. C. Vogt, Bert M. Weckhuysen, Weimin Yang. SCM-36 zeolite nanosheets applied in the production of renewable p-xylene from ethylene and 2,5-dimethylfuran [J]. Chinese Journal of Catalysis, 2023, 47(4): 200-213. |
[11] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[12] | Chenggong Yang, Donge Wang, Rong Huang, Jianqiang Han, Na Ta, Huaijun Ma, Wei Qu, Zhendong Pan, Congxin Wang, Zhijian Tian. Highly active and stable MoS2-TiO2 nanocomposite catalyst for slurry-phase phenanthrene hydrogenation [J]. Chinese Journal of Catalysis, 2023, 46(3): 125-136. |
[13] | Hongfang Wang, Leitao Xu, Jingcheng Wu, Peng Zhou, Shasha Tao, Yuxuan Lu, Xianwen Wu, Shuangyin Wang, Yuqin Zou. Boosting 5-hydroxymethylfurfural electrooxidation in neutral electrolytes via TEMPO-enhanced dehydrogenation and OH adsorption [J]. Chinese Journal of Catalysis, 2023, 46(3): 148-156. |
[14] | Yue Liu, Wei Zhang, Haichao Liu. Unraveling the active states of WO3-based catalysts in the selective conversion of cellulose to glycols [J]. Chinese Journal of Catalysis, 2023, 46(3): 56-63. |
[15] | Chao Nie, Xiangdong Long, Qi Liu, Jia Wang, Fei Zhan, Zelun Zhao, Jiong Li, Yongjie Xi, Fuwei Li. Facile fabrication of atomically dispersed Ru-P-Ru ensembles for efficient hydrogenations beyond isolated single atoms [J]. Chinese Journal of Catalysis, 2023, 45(2): 107-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||