• Articles • Previous Articles Next Articles
YU Xinluan, WANG Yan, MENG Xiangjiang, YANG Jianjun
Received:
2013-01-27
Revised:
2013-04-07
Online:
2013-07-16
Published:
2013-07-16
Supported by:
This work was supported by the National Natural Science Foundation of China (20973054).
YU Xinluan, WANG Yan, MENG Xiangjiang, YANG Jianjun. Preparation and characterization of Pd/N codoped TiO2 photocatalysts with high visible light photocatalytic activity[J]. Chinese Journal of Catalysis, DOI: 10.1016/S1872-2067(12)60597-X.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(12)60597-X
[1] Hashimoto K, Irie H, Fujishima A. Jpn J Appl Phys Part 1, 2005, 44: 8269[2] Shah S I, Li W, Huang C P, Jung O, Ni C. Proc Natl Acad Sci USA, 2002, 99: 6482[3] Kim S, Hwang S J, Choi W. J Phys Chem B, 2005, 109: 24260[4] Irie H, Watanabe Y, Hashimoto K. J Phys Chem B, 2003, 107: 5483[5] Khan S U M, Al-Shahry M, Ingler W B Jr. Science, 2002, 297: 2243[6] Cho Y, Choi W, Lee C H, Hyeon T, Lee H I. Environ Sci Technol, 2001, 35: 966[7] Huo Y N, Yang X L, Zhu J, Li H X. Appl Catal B, 2011, 106: 69[8] Talgorn E, Abellon R D, Kooyman P J, Piris J, Savenije T J, Goossens A, Houtepen A J, Siebbeles L D A. ACS Nano, 2010, 4: 1723[9] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269[10] Torres G R, Lindgren T, Lu J, Granqvist C G, Lindquis S E. J Phys Chem B, 2004, 108: 5995[11] Choi W, Termin A, Hoffmann M R. J Phys Chem, 1994, 98: 13669[12] Chen J H, Yao M S, Wang X L. J Nanopart Res, 2008, 10: 163[13] Ni Y H, Zhu Y, Ma X. Dalton Trans, 2011, 40: 3689 [14] Liu J, Han R, Zhao Y, Wang H, Lu W, Yu T, Zhang Y. J Phys Chem C, 2011, 115: 4507[15] Hua N P, Wu Z Y, Du Y K, Zou Z G, Yang P. Acta Phys-Chim Sin, 2005, 21: 1081[16] Naik B, Parida K M. Ind Eng Chem Res, 2010, 49: 8339[17] Wang E J, He T, Zhao L S, Chen Y M, Cao Y A. J Mater Chem, 2011, 21: 144[18] Liu H B, Wu Y M, Zhang J L. ACS Appl Mater Inter, 2011, 3: 1757[19] Wang Y, Zhao H, Chen Y, Sun R M, Liu Y. Chem Res (王岩, 赵辉, 陈永, 孙瑞敏, 刘洋. 化学研究), 2010, 21: 47[20] Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl Catal, 2011, 104: 268[21] Jing M J, Wang Y, Qian J J, Zhang M, Yang J J. Chin J Catal (景明俊, 王岩, 钱俊杰, 张敏, 杨建军. 催化学报), 2012, 33: 550[22] Ma P J, Yan G T, Qian J J, Zhang M, Yang J J. Chin J Catal (马鹏举, 闫国田, 钱俊杰, 张敏, 杨建军. 催化学报), 2011, 32: 1430[23] Wang Y, Jing M J, Zhang M, Yang J J. Catal Commun, 2012, 20: 46[24] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Langmuir, 1998, 14: 3160[25] Seo D S, Lee J K, Kim H. Cryst Growth, 2001, 229: 428[26] Wang Y Q, Hu G Q, Duan X F, Sun H L, Xue Q K. Chem Phys Lett, 2002, 365: 427[27] Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z. Dalton Trans, 2003, 20: 3898[28] Zhang M, Jin Z S, Zhang J W, Guo X Y, Yang J J, Li W, Wang X D, Zhang Z J. J Mol Catal A, 2004, 217: 203[29] Zhang S L, Li W, Jin Z S, Yang J J, Zhang J W, Du Z L, Zhang Z J. J Solid State Chem, 2004, 177: 1365[30] Yamada K, Yamane H, Matsushima S, Nakamura H, Ohira K, Kouya M, Kumada K. Thin Solid Films, 2008, 516: 7482[31] Li Q, Liang W, Shang J K. Appl Phys Lett, 2007, 90: 063109[32] Lignier P, Comotti M, Schüth F, Rousset J L, Caps V. Catal Today, 2009, 141: 355[33] Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl Catal B, 2010, 100: 84[34] Saha N C, Tompkins H G. J Appl Phys, 1992, 72: 3072[35] Sato S, Nakamura R, Abe S. Appl Catal, 2005, 284: 131[36] Jing M J, Wang Y, Zhang M, Yang J J. Imag Sci Photochem (景明俊, 王岩, 张敏, 杨建军. 影像科学与光化学), 2011, 29: 353[37] Qian J, Cui G, Jing M, Wang Y, Zhang M, Yang J. Int J Photoenergy, 2012, 2012: 1[38] Li Q, Xie R C, Mintz E A, Shang J K. J Am Ceram Soc, 2007, 90: 3863[39] AramendÍa M A, Borau V, Colmenares J C, Marinas A, Marinas J M, NavÍo J A, Urbano F J. Appl Catal B, 2008, 80: 88[40] Kaichev V V, Morkel M, Unterhalt H, Prosvirin I P, Bukhtiyarov V I, Rupprechter G, Freund H J. Surf Sci, 2004, 566-568: 1024[41] Demoulin O, Navez M, Ruiz P. Catal Lett, 2005, 103: 149[42] Ketteler G, Ogletree D F, Bluhm H, Liu H, Hebenstreit E L D, Salmeron M. J Am Chem Soc, 2005, 127: 18269[43] Bi Y S, Lu G X. Appl Catal B, 2003, 41: 279[44] Yu J G, Qi L F, Jaroniec M. J Phys Chem C, 2010, 114: 13118[45] Yu J G, Yue L, Liu S W, Huang B B, Zhang X Y. J Colloid Interface Sci, 2009, 334: 58[46] Zhang W F, Zhang M S,Yin Z, Chen Q. Appl Phys B, 2000, 70: 261[47] Zhou M H, Yu J G, Liu S W, Zhai P C, Jiang L. J Hazard Mater, 2008, 154: 1141[48] Qian L, Jin Z S, Zhang J W, Huang Y B, Zhang Z J, Du Z L. Appl Phys A, 2005, 80: 1801[49] Spadavecchia F, Cappelletti G, Ardizzone S, Bianchi C L, Cappelli S, Oliva C, Scardi P, Leoni M, Fermo P. Appl Catal B, 2010, 96: 314 |
[1] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[2] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[3] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[4] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[5] | Weikang Wang, Shaobin Mei, Haopeng Jiang, Lele Wang, Hua Tang, Qinqin Liu. Recent advances in TiO2-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2023, 55(12): 137-158. |
[6] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
[7] | Xianwen Zhang, Zheng Li, Taifeng Liu, Mingrun Li, Chaobin Zeng, Hiroaki Matsumoto, Hongxian Han. Water oxidation sites located at the interface of Pt/SrTiO3 for photocatalytic overall water splitting [J]. Chinese Journal of Catalysis, 2022, 43(8): 2223-2230. |
[8] | Qing Yao, Jiabo Le, Shize Yang, Jun Cheng, Qi Shao, Xiaoqing Huang. A trace of Pt can significantly boost RuO2 for acidic water splitting [J]. Chinese Journal of Catalysis, 2022, 43(6): 1493-1501. |
[9] | Yu Deng, Jue Li, Rumeng Zhang, Chunqiu Han, Yi Chen, Ying Zhou, Wei Liu, Po Keung Wong, Liqun Ye. Solar-energy-driven photothermal catalytic C-C coupling from CO2 reduction over WO3-x [J]. Chinese Journal of Catalysis, 2022, 43(5): 1230-1237. |
[10] | Xuemei Jia, Zichen Shen, Qiaofeng Han, Huiping Bi. Rod-like Bi4O5I2/Bi4O5Br2 step-scheme heterostructure with oxygen vacancies synthesized by calcining the solid solution containing organic group [J]. Chinese Journal of Catalysis, 2022, 43(2): 288-302. |
[11] | Ke Wang, Shihui He, Yunzhi Lin, Xun Chen, Wenxin Dai, Xianzhi Fu. Photo-enhanced thermal catalytic CO2 methanation activity and stability over oxygen-deficient Ru/TiO2 with exposed TiO2 {001} facets: Adjusting photogenerated electron behaviors by metal-support interactions [J]. Chinese Journal of Catalysis, 2022, 43(2): 391-402. |
[12] | Shijie Li, Mingjie Cai, Yanping Liu, Chunchun Wang, Kangle Lv, Xiaobo Chen. S-Scheme photocatalyst TaON/Bi2WO6 nanofibers with oxygen vacancies for efficient abatement of antibiotics and Cr(VI): Intermediate eco-toxicity analysis and mechanistic insights [J]. Chinese Journal of Catalysis, 2022, 43(10): 2652-2664. |
[13] | Xianglong Yang, Shengyao Wang, Ting Chen, Nan Yang, Kai Jiang, Pei Wang, Shu Li, Xing Ding, Hao Chen. Chloridion-induced dual tunable fabrication of oxygen-deficient Bi2WO6 atomic layers for deep oxidation of NO [J]. Chinese Journal of Catalysis, 2021, 42(6): 1013-1023. |
[14] | Feiyue Ge, Shuquan Huang, Jia Yan, Liquan Jing, Feng Chen, Meng Xie, Yuanguo Xu, Hui Xu, Huaming Li. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity [J]. Chinese Journal of Catalysis, 2021, 42(3): 450-459. |
[15] | Pengqi Zhu, Yunwei Wang, Xichen Sun, Jin Zhang, Eric R. Waclawik, Zhanfeng Zheng. Photocatalytic-controlled olefin isomerization over WO3-x using low-energy photons up to 625 nm [J]. Chinese Journal of Catalysis, 2021, 42(10): 1641-1647. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||