Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (1): 115-122.DOI: 10.1016/S1872-2067(20)63598-7
• Articles • Previous Articles Next Articles
Bicheng Zhua, Liuyang Zhanga, Bei Chenga, Yan Yub,#(), Jiaguo Yua,c,*(
)
Received:
2020-02-29
Accepted:
2020-04-09
Online:
2021-01-18
Published:
2021-01-18
Contact:
Yan Yu,Jiaguo Yu
About author:
#E-mail: yuyan@fzu.edu.cnSupported by:
Bicheng Zhu, Liuyang Zhang, Bei Cheng, Yan Yu, Jiaguo Yu. H2O molecule adsorption on s-triazine-based g-C3N4[J]. Chinese Journal of Catalysis, 2021, 42(1): 115-122.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63598-7
Fig. 1. Top view (upper) and side view (lower) of the constructed adsorption models with different adsorption manners (taking the adsorption at N2 site as an example): the H2O molecule plane being parallel to the g-C3N4 plane (a), the H2O molecule plane being perpendicular to the g-C3N4 plane with upward (b) and downward (c) orientation of the H-O-H angle.
Fig. 3. Top views of the constructed parallel adsorption models with various adsorption sites and directions. The dashed line displays the symmetry axis of a H2O molecule.
Adsorption configuration | Vertical | Parallel | |||
---|---|---|---|---|---|
Upward | Downward | X-n | X-n’ | ||
N1-1 | -1.344 | -2.288 | -2.525 | — | |
N1-2 | -1.345 | -2.541 | -2.553 | -2.351 | |
N2-1 | -2.538 | -2.549 | -2.543 | -2.544 | |
N2-2 | -2.557 | -2.565 | -2.548 | -2.246 | |
N2-3 | -2.544 | -2.554 | -2.562 | -2.538 | |
N2-4 | -2.229 | -2.558 | -2.567 | — | |
C-1 | -2.501 | -2.543 | -2.501 | — | |
C-2 | -2.501 | -2.566 | -2.519 | -2.501 | |
C-3 | -2.180 | -2.539 | -2.543 | -2.204 | |
C-4 | -2.539 | -2.540 | -2.540 | -2.500 | |
B1-1 | -2.541 | -2.538 | -2.565 | — | |
B1-2 | —a | -2.259 | -2.542 | -2.512 | |
B2-1 | -2.540 | -2.540 | -2.542 | -2.549 | |
B2-2 | -2.549 | -2.513 | -2.551 | -2.261 | |
I1-1 | -2.046 | -2.560 | -2.564 | — | |
I1-2 | -2.047 | -2.561 | -2.542 | -2.554 | |
I2-1 | -2.291 | —a | -2.320 | — | |
I2-2 | -1.353 | -2.549 | -2.185 | -2.330 |
Table 1 Calculated adsorption energy (eV) for H2O adsorbed g-C3N4 models.
Adsorption configuration | Vertical | Parallel | |||
---|---|---|---|---|---|
Upward | Downward | X-n | X-n’ | ||
N1-1 | -1.344 | -2.288 | -2.525 | — | |
N1-2 | -1.345 | -2.541 | -2.553 | -2.351 | |
N2-1 | -2.538 | -2.549 | -2.543 | -2.544 | |
N2-2 | -2.557 | -2.565 | -2.548 | -2.246 | |
N2-3 | -2.544 | -2.554 | -2.562 | -2.538 | |
N2-4 | -2.229 | -2.558 | -2.567 | — | |
C-1 | -2.501 | -2.543 | -2.501 | — | |
C-2 | -2.501 | -2.566 | -2.519 | -2.501 | |
C-3 | -2.180 | -2.539 | -2.543 | -2.204 | |
C-4 | -2.539 | -2.540 | -2.540 | -2.500 | |
B1-1 | -2.541 | -2.538 | -2.565 | — | |
B1-2 | —a | -2.259 | -2.542 | -2.512 | |
B2-1 | -2.540 | -2.540 | -2.542 | -2.549 | |
B2-2 | -2.549 | -2.513 | -2.551 | -2.261 | |
I1-1 | -2.046 | -2.560 | -2.564 | — | |
I1-2 | -2.047 | -2.561 | -2.542 | -2.554 | |
I2-1 | -2.291 | —a | -2.320 | — | |
I2-2 | -1.353 | -2.549 | -2.185 | -2.330 |
Fig. 4. Top view (a) and side view (b) of the optimized adsorption model with the most negative adsorption energy. The dashed line represents the O-H…N hydrogen bond.
H2O molecule | Mulliken charge (e) | Bond length (Å) | Bond angle (°) | ||||
---|---|---|---|---|---|---|---|
H1 a | O | H2 | O-H1 | O-H2 | |||
Single H2O molecule | 0.52 | -1.05 | 0.53 | 0.976 | 0.976 | 104.6 | |
Adsorbed H2O molecule | 0.49 | -1.04 | 0.52 | 0.994 | 0.975 | 105.3 |
Table 2 Mulliken charge and geometric parameters of single and adsorbed H2O molecules.
H2O molecule | Mulliken charge (e) | Bond length (Å) | Bond angle (°) | ||||
---|---|---|---|---|---|---|---|
H1 a | O | H2 | O-H1 | O-H2 | |||
Single H2O molecule | 0.52 | -1.05 | 0.53 | 0.976 | 0.976 | 104.6 | |
Adsorbed H2O molecule | 0.49 | -1.04 | 0.52 | 0.994 | 0.975 | 105.3 |
Fig. 5. Electrostatic potential of pure g-C3N4 (a) and extracted g-C3N4 (b) from the H2O adsorbed g-C3N4 model; (c) PDOS of N and H atoms in the O-H…N hydrogen bond.
Supercell | Mulliken charge (e) | Bond length (Å) | H…N distance (Å) | ||||
---|---|---|---|---|---|---|---|
H1 | O | H2 | O-H1 | O-H2 | |||
2×2 | 0.49 | -1.04 | 0.52 | 0.994 | 0.975 | 1.92 | |
3×3 | 0.48 | -1.04 | 0.52 | 0.994 | 0.975 | 1.91 | |
4×4 | 0.48 | -1.04 | 0.52 | 0.993 | 0.975 | 1.91 |
Table 3 Mulliken charge and geometric parameters of the adsorbed H2O molecule on monolayer g-C3N4 supercells.
Supercell | Mulliken charge (e) | Bond length (Å) | H…N distance (Å) | ||||
---|---|---|---|---|---|---|---|
H1 | O | H2 | O-H1 | O-H2 | |||
2×2 | 0.49 | -1.04 | 0.52 | 0.994 | 0.975 | 1.92 | |
3×3 | 0.48 | -1.04 | 0.52 | 0.994 | 0.975 | 1.91 | |
4×4 | 0.48 | -1.04 | 0.52 | 0.993 | 0.975 | 1.91 |
Fig. 9. Optimized structures of (6,6), (8,8), (10,10) g-C3N4 nanotubes (a-c), and H2O adsorption on (6,6), (8,8), (10,10) g-C3N4 nanotubes (d-f). Parts of C and N atoms in (d-f) are shown by yellow balls in order to clearly present the location of the H2O molecule.
(n,n) | Mulliken charge (e) | Bond length (Å) | H…N distance (Å) | ||||
---|---|---|---|---|---|---|---|
H1 | O | H2 | O-H1 | O-H2 | |||
(6,6) | 0.49 | -1.04 | 0.52 | 0.988 | 0.975 | 2.02 | |
(8,8) | 0.50 | -1.04 | 0.52 | 0.988 | 0.975 | 2.09 | |
(10,10) | 0.49 | -1.04 | 0.52 | 0.991 | 0.975 | 1.96 |
Table 4 Mulliken charge and geometric parameters of the adsorbed H2O molecule on (n,n) g-C3N4 nanotubes.
(n,n) | Mulliken charge (e) | Bond length (Å) | H…N distance (Å) | ||||
---|---|---|---|---|---|---|---|
H1 | O | H2 | O-H1 | O-H2 | |||
(6,6) | 0.49 | -1.04 | 0.52 | 0.988 | 0.975 | 2.02 | |
(8,8) | 0.50 | -1.04 | 0.52 | 0.988 | 0.975 | 2.09 | |
(10,10) | 0.49 | -1.04 | 0.52 | 0.991 | 0.975 | 1.96 |
|
[1] | Binbin Zhao, Wei Zhong, Feng Chen, Ping Wang, Chuanbiao Bie, Huogen Yu. High-crystalline g-C3N4 photocatalysts: Synthesis, structure modulation, and H2-evolution application [J]. Chinese Journal of Catalysis, 2023, 52(9): 127-143. |
[2] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[3] | Xin Liu, Maodi Wang, Yiqi Ren, Jiali Liu, Huicong Dai, Qihua Yang. Construction of modularized catalytic system for transfer hydrogenation: Promotion effect of hydrogen bonds [J]. Chinese Journal of Catalysis, 2023, 52(9): 207-216. |
[4] | Lu Cheng, Xuning Chen, P. Hu, Xiao-Ming Cao. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites [J]. Chinese Journal of Catalysis, 2023, 51(8): 135-144. |
[5] | Zhaochun Liu, Xue Zong, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. A computational study of electrochemical CO2 reduction to formic acid on metal-doped SnO2 [J]. Chinese Journal of Catalysis, 2023, 50(7): 249-259. |
[6] | Liyuan Gong, Ying Wang, Jie Liu, Xian Wang, Yang Li, Shuai Hou, Zhijian Wu, Zhao Jin, Changpeng Liu, Wei Xing, Junjie Ge. Reshaping the coordination and electronic structure of single atom sites on the right branch of ORR volcano plot [J]. Chinese Journal of Catalysis, 2023, 50(7): 352-360. |
[7] | Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding, Dandan Cai, Shuqin Song. Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering [J]. Chinese Journal of Catalysis, 2023, 50(7): 334-342. |
[8] | Xinjie Song, Shipeng Fan, Zehua Cai, Zhou Yang, Xun Chen, Xianzhi Fu, Wenxin Dai. NH3 synthesis via visible-light-assisted thermocatalytic NO reduction by CO in the presence of H2O over Cu/CeO2 [J]. Chinese Journal of Catalysis, 2023, 49(6): 168-179. |
[9] | Zheng-Qing Huang, Shu-Yue He, Tao Ban, Xin Gao, Yun-Hua Xu, Chun-Ran Chang. Mechanistic and microkinetic study of nonoxidative coupling of methane on Pt-Cu alloy catalysts: From single-atom sites to single-cluster sites [J]. Chinese Journal of Catalysis, 2023, 48(5): 90-100. |
[10] | Huijuan Jing, Jun Long, Huan Li, Xiaoyan Fu, Jianping Xiao. Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate [J]. Chinese Journal of Catalysis, 2023, 48(5): 205-213. |
[11] | Zhiyue Zhao, Zhiwei Jiang, Yizhe Huang, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, Huixia Luo, Kai Yan. Facile synthesis of CoSi alloy catalysts with rich vacancies for base- and solvent-free aerobic oxidation of aromatic alcohols [J]. Chinese Journal of Catalysis, 2023, 48(5): 175-184. |
[12] | Sue-Faye Ng, Xingzhu Chen, Joel Jie Foo, Mo Xiong, Wee-Jun Ong. 2D carbon nitrides: Regulating non-metal boron-doped C3N5 for elucidating the mechanism of wide pH range photocatalytic hydrogen evolution reaction [J]. Chinese Journal of Catalysis, 2023, 47(4): 150-160. |
[13] | Ning Li, Xueyun Gao, Junhui Su, Yangqin Gao, Lei Ge. Metallic WO2-decorated g-C3N4 nanosheets as noble-metal-free photocatalysts for efficient photocatalysis [J]. Chinese Journal of Catalysis, 2023, 47(4): 161-170. |
[14] | Eun Hyup Kim, Min Hee Lee, Jeehye Kim, Eun Cheol Ra, Ju Hyeong Lee, Jae Sung Lee. Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydro-genation to formic acid [J]. Chinese Journal of Catalysis, 2023, 47(4): 214-221. |
[15] | Qian Li, Qijun Tang, Peiyao Xiong, Dongzhi Chen, Jianmeng Chen, Zhongbiao Wu, Haiqiang Wang. Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: Distinct role of single-atomic state in boosting CH4 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 177-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||