Chinese Journal of Catalysis ›› 2025, Vol. 75: 105-114.DOI: 10.1016/S1872-2067(25)64750-4
• Article • Previous Articles Next Articles
Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei()
Received:
2025-02-14
Accepted:
2025-04-09
Online:
2025-08-18
Published:
2025-07-22
Contact:
*E-mail: hhw@cugb.edu.cn (H. W. Huang).
Supported by:
Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei. Few-layer oxygen vacant Bi2O2(OH)NO3 for dual-channel piezocatalytic H2O2 production from H2O and air[J]. Chinese Journal of Catalysis, 2025, 75: 105-114.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64750-4
Fig. 1. (a) Preparation process diagram of BON-OVx samples. TEM (b) and HRTEM (c,d) images of BON-OV2. (e) EDX elemental mapping images of Bi, O and N elements of BON-OV2. AFM images of BON (f) and BON-OV2 (g).
Fig. 2. (a) XRD diffraction patterns of samples. XPS survey spectra (b), Bi 4f (c), O 1s (d) and N 1s (e) spectra of BON and BON-OV2. (f) EPR spectra of BON and BON-OV2. (g) Band gaps of BON and BON-OV2. (h) Mott-Schottky plots of BON and BON-OV2 measured at frequencies of 800 Hz and 1000 Hz. (i) Diagrams of the band structures of BON and BON-OV2.
Fig. 3. (a,b) H2O2 yield of control experiment and as-prepared samples. (c) H2O2 yield as a function of ultrasound power on BON-OV2. (d) Cycling runs of piezocatalytic H2O2 production over BON-OV2. (e) Piezocatalytic H2O2 production performance comparison over different piezocatalysts.
Fig. 4. (a) Trapping experiments of active species. (b,c) ESR spectra of BON and BON-OV2 for detection of ·O2- and ·OH. (d) Piezocatalytic H2O2 yield under different atmospheres. RRDE curves (e) and electron transfer numbers (f) at different potentials of BON and BON-OV2. LSV curves (g), I-T curves (h) and EIS plots (i) of BON and BON-OV2.
Fig. 5. Potential distribution and corresponding lines of BON-OV2 (a) and BON (b). The butterfly amplitude loop and phase curve of BON-OV2 (c) and BON (d). The simulated potential distribution of BON-OV2 (e) and BON (f). (g) Piezoelectric performance enhancement mechanism diagram.
Fig. 6. Charge difference and associated electron transfer of O2 molecules adsorbed on BON (a) and BON-OV (b). Electronic band structure and PDOS of BON-OV (c,d) and BON (e,f).
|
[1] | Feng Chao, Xiong Gaoyan, Chen Chong, Lin Yan, Wang Zhong, Lu Yukun, Liu Fang, Li Xuebing, Liu Yunqi, Zhang Runduo, Pan Yuan. Highly dispersed Pt/Co3O4 catalyst constructed by vacancy defect inductive effect for enhanced catalytic propane total oxidation [J]. Chinese Journal of Catalysis, 2025, 75(8): 21-33. |
[2] | Wang Qiuyue, Yang Chenyu, Zhu Shenggan, Zhang Yuansen, Wang Xuan, Li Yongting, Ding Weiping, Guo Xuefeng. Interface engineering of oxygen-vacancy-rich MgO/Ni@NiAlO enables low-temperature coke-free methane dry reforming [J]. Chinese Journal of Catalysis, 2025, 75(8): 9-20. |
[3] | Xiong Qi, Shi Quanquan, Wang Binli, Baiker Alfons, Li Gao. Facet-induced reduction directed AgBr/Ag0/TiO2{100} Z-scheme heterojunction for tetracycline removal [J]. Chinese Journal of Catalysis, 2025, 75(8): 164-179. |
[4] | Cunjun Li, Jie He, Tianle Cai, Xianlei Chen, Hengcong Tao, Yingtang Zhou, Mingshan Zhu. Surface oxygen vacancies of BiOBr regulating piezoelectricity for enhancing efficiency and selectivity of photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 130-143. |
[5] | Pengkun Zhang, Qinhan Wu, Haoyu Wang, Dong-Hau Kuo, Yujie Lai, Dongfang Lu, Jiqing Li, Jinguo Lin, Zhanhui Yuan, Xiaoyun Chen. Z-scheme heterojunction Zn3(OH)2(V2O7)(H2O)2/V-Zn(O,S) for enhanced visible-light photocatalytic N2 fixation via synergistic heterovalent vanadium states and oxygen vacancy defects [J]. Chinese Journal of Catalysis, 2025, 74(7): 279-293. |
[6] | Rui Li, Pengfei Feng, Bonan Li, Jiayu Zhu, Yali Zhang, Ze Zhang, Jiangwei Zhang, Yong Ding. Photocatalytic reduction of CO2 over porous ultrathin NiO nanosheets with oxygen vacancies [J]. Chinese Journal of Catalysis, 2025, 73(6): 242-251. |
[7] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[8] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[9] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[10] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[11] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[12] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[13] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[14] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[15] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||