Chinese Journal of Catalysis ›› 2025, Vol. 75: 21-33.DOI: 10.1016/S1872-2067(25)64736-X
• Article • Previous Articles Next Articles
Feng Chaoa,c,d,*(), Xiong Gaoyanc, Chen Chongc, Lin Yanb,*(
), Wang Zhongd, Lu Yukunc, Liu Fangc, Li Xuebingd, Liu Yunqic, Zhang Runduoe,*(
), Pan Yuanc,*(
)
Received:
2025-03-10
Accepted:
2025-05-10
Online:
2025-08-18
Published:
2025-07-22
Contact:
*E-mail: fengchao@sdust.edu.cn (C. Feng),linyan09@sdust.edu.cn (Y. Lin),zhangrd@mail.buct.edu.cn (R. Zhang), panyuan@upc.edu.cn (Y. Pan).
Supported by:
Feng Chao, Xiong Gaoyan, Chen Chong, Lin Yan, Wang Zhong, Lu Yukun, Liu Fang, Li Xuebing, Liu Yunqi, Zhang Runduo, Pan Yuan. Highly dispersed Pt/Co3O4 catalyst constructed by vacancy defect inductive effect for enhanced catalytic propane total oxidation[J]. Chinese Journal of Catalysis, 2025, 75: 21-33.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64736-X
Fig. 1. (a) Illustration of the synthesis of Pt/VO-Co3O4 catalysts. SEM (b), TEM (c), HRTEM (d), EDS-mapping (e) and HAADF-STEM (f) images of 0.6Pt/VO-Co3O4 catalysts.
Fig. 2. The Co XANES (a) and R-space FT EXAFS (b) of 0.6Pt/Co3O4 and 0.6Pt/VO-Co3O4 catalysts Co K-edge. Pt XANES (c) and R-space FT EXAFS (d) of 0.6Pt/Co3O4 and 0.6Pt/VO-Co3O4 catalysts Pt L-edge.
Fig. 3. EPR spectra (a), Raman spectra (b), bond calculated on the basis of Hooke’s law (c), Co 2p (d), O 1s (e) and Pt 4d (f) XPS spectra, O2-TPD (g), ESR spectrum (h) and H2-TPR spectra (i) of 0.6Pt/Co3O4 and 0.6Pt/VO-Co3O4 catalysts.
Fig. 4. Propane conversion in dry (a) and humid (b) atmosphere, stability in humid atmosphere (c) with 5 vol% H2O of 0.6Pt/Co3O4 and 0.6Pt/VO-Co3O4 catalysts. (d) Correlation between activities and surface species ratio.
Fig. 5. Dependence of reaction rate on partial pressure of propane of Pt/SiO2, Co3O4, VO-Co3O4 (a) and 0.6Pt/Co3O4, 0.6Pt/VO-Co3O4 (b), and oxygen of Pt/SiO2, Co3O4, VO-Co3O4 (c) and0.6Pt/Co3O4, 0.6Pt/VO-Co3O4 (d).
Catalyst | Rate expression |
---|---|
Pt/SiO2 | r = 1.72 × 10-4[C3H8]1.01[O2]-0.57 |
Co3O4 | r = 1.85 × 10-4[C3H8]1.01[O2]-0.86 |
VO-Co3O4 | r = 2.44 × 10-4[C3H8]1.00[O2]-0.84 |
0.3Pt/Co3O4 | r = 3.42 × 10-4[C3H8]1.02[O2]-0.69 |
0.6Pt/Co3O4 | r = 3.50 × 10-4[C3H8]0.99[O2]-0.70 |
1.2Pt/Co3O4 | r = 3.43 × 10-4[C3H8]0.99[O2]-0.74 |
0.3Pt/VO-Co3O4 | r = 5.38 × 10-4[C3H8]0.99[O2]-0.70 |
0.6Pt/VO-Co3O4 | r = 5.99 × 10-4[C3H8]0.98[O2]-0.62 |
1.2Pt/VO-Co3O4 | r = 3.50 × 10-4[C3H8]1.00[O2]-0.75 |
Table 1 Rate expressions of propane oxidation over Pt/Co3O4 and Pt/VO-Co3O4 catalysts.
Catalyst | Rate expression |
---|---|
Pt/SiO2 | r = 1.72 × 10-4[C3H8]1.01[O2]-0.57 |
Co3O4 | r = 1.85 × 10-4[C3H8]1.01[O2]-0.86 |
VO-Co3O4 | r = 2.44 × 10-4[C3H8]1.00[O2]-0.84 |
0.3Pt/Co3O4 | r = 3.42 × 10-4[C3H8]1.02[O2]-0.69 |
0.6Pt/Co3O4 | r = 3.50 × 10-4[C3H8]0.99[O2]-0.70 |
1.2Pt/Co3O4 | r = 3.43 × 10-4[C3H8]0.99[O2]-0.74 |
0.3Pt/VO-Co3O4 | r = 5.38 × 10-4[C3H8]0.99[O2]-0.70 |
0.6Pt/VO-Co3O4 | r = 5.99 × 10-4[C3H8]0.98[O2]-0.62 |
1.2Pt/VO-Co3O4 | r = 3.50 × 10-4[C3H8]1.00[O2]-0.75 |
Fig. 6. In-situ DRIFTs of propane oxidation over Co3O4 (a), VO-Co3O4 (b), 0.6Pt/Co3O4 (c) and 0.6Pt/VO-Co3O4 (d). In-situ DRIFTs signal difference between Co3O4 and VO-Co3O4 (e), 0.6Pt/Co3O4 and 0.6Pt/VO-Co3O4 (f).
Fig. 7. Charge density difference plot generated for Pt loading on the surface of Pt/VO-Co3O4 (a) and Pt/Co3O4 (b). The isosurface value is 0.005 e bohr-3. The yellow and blue represent positive and negative. (c) Pt PDOS. O dissociation energies (d), O2 adsorption AIMD (e), DOS (f) of C3H8 adsorbed on Co3O4, Pt/VO-Co3O4 and Pt/Co3O4. (g) Change of Gibbs free energy during propane initial oxidation of Co3O4, Pt/VO-Co3O4 and Pt/Co3O4. The models of IS and TS are shown in Supporting Information.
|
[1] | Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei. Few-layer oxygen vacant Bi2O2(OH)NO3 for dual-channel piezocatalytic H2O2 production from H2O and air [J]. Chinese Journal of Catalysis, 2025, 75(8): 105-114. |
[2] | Wang Qiuyue, Yang Chenyu, Zhu Shenggan, Zhang Yuansen, Wang Xuan, Li Yongting, Ding Weiping, Guo Xuefeng. Interface engineering of oxygen-vacancy-rich MgO/Ni@NiAlO enables low-temperature coke-free methane dry reforming [J]. Chinese Journal of Catalysis, 2025, 75(8): 9-20. |
[3] | Xiong Qi, Shi Quanquan, Wang Binli, Baiker Alfons, Li Gao. Facet-induced reduction directed AgBr/Ag0/TiO2{100} Z-scheme heterojunction for tetracycline removal [J]. Chinese Journal of Catalysis, 2025, 75(8): 164-179. |
[4] | Cunjun Li, Jie He, Tianle Cai, Xianlei Chen, Hengcong Tao, Yingtang Zhou, Mingshan Zhu. Surface oxygen vacancies of BiOBr regulating piezoelectricity for enhancing efficiency and selectivity of photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 130-143. |
[5] | Pengkun Zhang, Qinhan Wu, Haoyu Wang, Dong-Hau Kuo, Yujie Lai, Dongfang Lu, Jiqing Li, Jinguo Lin, Zhanhui Yuan, Xiaoyun Chen. Z-scheme heterojunction Zn3(OH)2(V2O7)(H2O)2/V-Zn(O,S) for enhanced visible-light photocatalytic N2 fixation via synergistic heterovalent vanadium states and oxygen vacancy defects [J]. Chinese Journal of Catalysis, 2025, 74(7): 279-293. |
[6] | Rui Li, Pengfei Feng, Bonan Li, Jiayu Zhu, Yali Zhang, Ze Zhang, Jiangwei Zhang, Yong Ding. Photocatalytic reduction of CO2 over porous ultrathin NiO nanosheets with oxygen vacancies [J]. Chinese Journal of Catalysis, 2025, 73(6): 242-251. |
[7] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[8] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[9] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[10] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[11] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[12] | Xiu-Qing Qiao, Chen Li, Zizhao Wang, Dongfang Hou, Dong-Sheng Li. TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance [J]. Chinese Journal of Catalysis, 2023, 51(8): 66-79. |
[13] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[14] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
[15] | Tingting Jiang, Weiwei Xie, Shipeng Geng, Ruchun Li, Shuqin Song, Yi Wang. Constructing oxygen vacancy-regulated cobalt molybdate nanoflakes for efficient oxygen evolution reaction catalysis [J]. Chinese Journal of Catalysis, 2022, 43(9): 2434-2442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||