Chinese Journal of Catalysis ›› 2025, Vol. 75: 9-20.DOI: 10.1016/S1872-2067(25)64743-7
• Article • Previous Articles Next Articles
Wang Qiuyuea, Yang Chenyua, Zhu Shengganb, Zhang Yuansena, Wang Xuana, Li Yongtinga, Ding Weipinga,*(), Guo Xuefenga,c,d,*(
)
Received:
2025-02-18
Accepted:
2025-04-18
Online:
2025-08-18
Published:
2025-07-22
Contact:
*E-mail: guoxf@nju.edu.cn (X. Guo),
dingwp@nju.edu.cn (W. Ding).
Supported by:
Wang Qiuyue, Yang Chenyu, Zhu Shenggan, Zhang Yuansen, Wang Xuan, Li Yongting, Ding Weiping, Guo Xuefeng. Interface engineering of oxygen-vacancy-rich MgO/Ni@NiAlO enables low-temperature coke-free methane dry reforming[J]. Chinese Journal of Catalysis, 2025, 75: 9-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(25)64743-7
Fig. 1. Schematic diagram illustrating three methods for introducing MgO into the NiO@NiAlO precursor to prepare the xMgOWI/Ni@NiAlO, 0.8MgOG/Ni@NiAlO, and 0.8MgOIWI/Ni@NiAlO catalysts.
Fig. 2. CH4 Conversion (a) and CO2 Conversion (b) over 0.8MgOWI/Ni@NiAlO catalyst at 500-750 °C. Reaction conditions: CH4/CO2/Ar = 2/2/6, GHSV = 60000 mL gcat-1 h-1.
Fig. 3. The conversion of CH4 (a) and CO2 (b) over Ni@NiAlO, 0.8MgOWI/Ni@NiAlO, 0.8MgOIWI/Ni@NiAlO and 0.8MgOG/Ni@NiAlO catalysts in DRM reaction. Reaction conditions: T = 600 °C, CH4/CO2/Ar = 2/2/6, GHSV = 60000 mL gcat-1 h-1. (c) Performance comparison of 0.8MgOWI/Ni@NiAlO with previously reported catalysts for LT-DRM. The numeral displayed in the circle corresponded to the reference number in the Supplementary Information Table S2, not the reference number in the main text.
Fig. 5. N2 adsorption-desorption isotherms (a) and XRD patterns (b) of 0.8MgO/Ni@NiAlO samples. (c) TEM-EDX characterization for the 0.8MgOWI/Ni@NiAlO catalyst.
Fig. 6. Ni 2p spectra (a), binding energies for Ni0 and Ni2+ (b), O 1s spectra (c), EPR spectra (d), H2-TPR (e), and CO2-TPD (f) profiles of Ni@NiAlO, 0.8MgOWI/Ni@NiAlO, 0.8MgOIWI/Ni@NiAlO and 0.8MgOG/Ni@NiAlO.
Fig. 7. XRD patterns (a), TG curves (b), and Raman spectra (c) of the used catalysts. (d) The typical TEM image of the used 0.8MgOWI/Ni@NiAlO catalyst.
Fig. 9. In-situ FT-IR spectra of 0.8MgOWI/Ni@NiAlO and Ni@NiAlO catalyst exposed to various gas streams at 50-500 °C (with interval of 50 °C) under CH4/Ar flow (a,b) and CO2/CH4/Ar (2/2/6) flow (c,d). Note that the spectra were recorded 30 min after the reaction was introduced.
Scheme 1. Schematic illustration of the possible mechanism of 0.8MgWI/Ni@NiAlO (MgO were introduced into both core and shell), 0.8MgOIWI/Ni@NiAlO (MgO were introduced into the core), and 0.8MgOG/Ni@NiAlO (MgO were introduced into the shell) on the DRM reaction.
|
[1] | Feng Chao, Xiong Gaoyan, Chen Chong, Lin Yan, Wang Zhong, Lu Yukun, Liu Fang, Li Xuebing, Liu Yunqi, Zhang Runduo, Pan Yuan. Highly dispersed Pt/Co3O4 catalyst constructed by vacancy defect inductive effect for enhanced catalytic propane total oxidation [J]. Chinese Journal of Catalysis, 2025, 75(8): 21-33. |
[2] | Li Yuanrui, Zhang Xiaolei, Li Tong, Hu Cheng, Chen Fang, Cai Hao, Huang Hongwei. Few-layer oxygen vacant Bi2O2(OH)NO3 for dual-channel piezocatalytic H2O2 production from H2O and air [J]. Chinese Journal of Catalysis, 2025, 75(8): 105-114. |
[3] | Xiong Qi, Shi Quanquan, Wang Binli, Baiker Alfons, Li Gao. Facet-induced reduction directed AgBr/Ag0/TiO2{100} Z-scheme heterojunction for tetracycline removal [J]. Chinese Journal of Catalysis, 2025, 75(8): 164-179. |
[4] | Cunjun Li, Jie He, Tianle Cai, Xianlei Chen, Hengcong Tao, Yingtang Zhou, Mingshan Zhu. Surface oxygen vacancies of BiOBr regulating piezoelectricity for enhancing efficiency and selectivity of photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2025, 74(7): 130-143. |
[5] | Pengkun Zhang, Qinhan Wu, Haoyu Wang, Dong-Hau Kuo, Yujie Lai, Dongfang Lu, Jiqing Li, Jinguo Lin, Zhanhui Yuan, Xiaoyun Chen. Z-scheme heterojunction Zn3(OH)2(V2O7)(H2O)2/V-Zn(O,S) for enhanced visible-light photocatalytic N2 fixation via synergistic heterovalent vanadium states and oxygen vacancy defects [J]. Chinese Journal of Catalysis, 2025, 74(7): 279-293. |
[6] | Rui Li, Pengfei Feng, Bonan Li, Jiayu Zhu, Yali Zhang, Ze Zhang, Jiangwei Zhang, Yong Ding. Photocatalytic reduction of CO2 over porous ultrathin NiO nanosheets with oxygen vacancies [J]. Chinese Journal of Catalysis, 2025, 73(6): 242-251. |
[7] | Xincheng Cao, Jiaping Zhao, Feng Long, Peng Liu, Yuguo Dong, Zupeng Chen, Junming Xu, Jianchun Jiang. Highly dispersed MoOx-Ru/C bimetallic catalyst for efficient hydrogenolysis of esters to alkanes [J]. Chinese Journal of Catalysis, 2025, 71(4): 256-266. |
[8] | Dezheng Li, Huimin Liu, Xuewen Xiao, Manqi Zhao, Dehua He, Yiming Lei. Carbon diffusion mechanism as an effective stability enhancement strategy: The case study of Ni-based catalyst for photothermal catalytic dry reforming of methane [J]. Chinese Journal of Catalysis, 2025, 70(3): 399-409. |
[9] | Yuqing Tang, Yanjun Chen, Aqsa Abid, Zichun Meng, Xiaoying Sun, Bo Li, Zhen Zhao. Revisiting the origin of the superior performance of defective zirconium oxide catalysts in propane dehydrogenation: Double-edged oxygen vacancy [J]. Chinese Journal of Catalysis, 2025, 68(1): 272-281. |
[10] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[11] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[12] | Xin Deng, Caiyan Zheng, Weijie Li, Jiamin Wang, Di Yang, Zhenpeng Hu, Landong Li. Spontaneous dispersion of metallic nickel centers in inert metal substrate for the selective hydrogenation of carbon-carbon triple bonds [J]. Chinese Journal of Catalysis, 2024, 61(6): 259-268. |
[13] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[14] | Jielin Huang, Jie Wang, Haonan Duan, Songsong Chen, Junping Zhang, Li Dong, Xiangping Zhang. Constructing mesoporous CeO2 single-crystal particles in ionic liquids for enhancing the conversion of CO2 and alcohols to carbonates [J]. Chinese Journal of Catalysis, 2024, 66(11): 152-167. |
[15] | Wangyang Wu, Shidan Yang, Huidan Qian, Ling Zhang, Lishan Peng, Li Li, Bin Liu, Zidong Wei. Interface engineering of advanced electrocatalysts toward alkaline hydrogen evolution reactions [J]. Chinese Journal of Catalysis, 2024, 66(11): 1-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||