催化学报 ›› 2018, Vol. 39 ›› Issue (5): 973-981.DOI: 10.1016/S1872-2067(18)63010-4

• 论文 • 上一篇    下一篇

类石墨碳修饰提高ZnO纳米棒阵列光催化活性和光稳定性的研究

张学伟a, 张学亮a, 王鑫a, 刘乐全a,b, 叶金花a,b,c, 王德法a,b   

  1. a 天津大学材料科学与工程学院, 天津市材料复合与功能化重点实验室, 先进陶瓷与加工技术教育部重点实验室, 天津大学-NIMS国际合作实验室, 天津 300072, 中国;
    b 天津化学化工协同创新中心, 天津 300072, 中国;
    c 日本国立物质材料研究机构材料纳米构筑学国际中心(WPI-MANA), 茨城县305-0044, 日本
  • 收稿日期:2017-11-18 修回日期:2017-12-28 出版日期:2018-05-18 发布日期:2018-04-19
  • 通讯作者: 王德法
  • 基金资助:

    国家重点基础研究发展计划(973计划,2014CB239300);国家自然科学基金(51572191,21633004);天津市自然科学基金(13JCYBJC16600).

Enhancing the photocatalytic activity and photostability of zinc oxide nanorod arrays via graphitic carbon mediation

Xuewei Zhanga, Xueliang Zhanga, Xin Wanga, Lequan Liua,b, Jinhua Yea,b,c, Defa Wanga,b   

  1. a TJU-NIMS International Collaboration Laboratory, Key Lab of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
    b Collaborative Innovation Center of Chemical Science and Engineering(Tianjin), Tianjin 300072, China;
    c International Center of Materials Nanoarchitectonics(WPI-MANA), National Institute for Materials Science(NIMS), Ibaraki 305-0044, Japan
  • Received:2017-11-18 Revised:2017-12-28 Online:2018-05-18 Published:2018-04-19
  • Contact: 10.1016/S1872-2067(18)63010-4
  • Supported by:

    This work was supported by the National Basic Research Program of China (973 Program, 2014CB239300), the National Natural Science Foundation of China (51572191, 21633004), and the Natural Science Foundation of Tianjin City (13JCYBJC16600).

摘要:

半导体光催化是一种理想的太阳能化学转化绿色技术,可以实现水分解制氢和CO2光还原制备碳氢化合物燃料.氧化锌(ZnO)作为一种直接带隙半导体材料,一方面具有性能优异、价格低廉、易制备等优点;另一方面因光腐蚀而不稳定,大大限制了该材料的实际应用.本文提出了一种简单易行的类石墨碳修饰方法,可以有效提高ZnO用于CO2光还原的光催化活性和稳定性.
首先采用水热法在金属锌片基底上生长ZnO纳米棒阵列(ZnO-NRA),然后通过葡萄糖水热法进行不同含量的类石墨碳(C-x)修饰,形成ZnO-NRA/C-x纳米复合结构,同步实现碳包覆和碳掺杂.X射线衍射结果表明,ZnO纳米棒及ZnO-NRA/C-x纳米复合结构都具有良好的纤锌矿型(Wurtzite)结构;而拉曼散射则清楚地证实了类石墨碳的存在.扫描电子显微观察显示,生长的ZnO纳米棒长度大约2-5mm,直径为400-700nm,沿方向[0001]生长,端部由六个规则的(103)晶面组成,进一步直观佐证了ZnO的典型纤锌矿型结构特征.透射电子显微分析结果表明,ZnO-NRA/C-x纳米复合结构中类石墨碳包覆层厚度大约为8nm.ZnO-NRA/C-x纳米复合结构的X射线光电子谱分析结果验证了C-C,C-O和C=O键的存在与碳的包覆层相对应;而C-O-Zn键的出现则是由于碳在ZnO中掺杂所引起.从紫外-可见吸收谱上可观察到ZnO的典型吸收带边位置约为385nm,而碳的包覆和掺杂导致ZnO-NRA/C-x纳米复合结构的吸收带边发生红移,并且吸收背底明显提高.
电化学阻抗谱测试结果清楚地显示,ZnO-NRA/C-x纳米复合结构比单纯ZnO-NRA的电化学阻抗明显降低,说明类石墨碳包覆层大幅度提高了电导性能,从而有利于光生载流子的分离和传输.荧光分析结果也表明,与单纯的ZnO-NRA相比,ZnO-NRA/C-x纳米复合结构的荧光强度大幅度下降,进一步证实了ZnO-NRA/C-x纳米复合结构比单纯的ZnO-NRA更有利于光生载流子的分离和传输.光电化学测试结果表明,ZnO-NRA/C-x纳米复合结构的瞬态光电流4倍于单纯的ZnO-NRA,而CO2光还原性能测试也得到一致的结果.长时间多循环CO2光还原实验证实,ZnO-NRA/C-x纳米复合结构具有稳定的光催化活性和极好的光稳定性.
综上,我们利用一种简单易行的水热法进行类石墨碳修饰,成功开发了ZnO-NRA/C-x纳米复合结构,该结构因其优异的光生电子和空穴的分离和迁移性能,从而具有显著提升的CO2光还原活性和光稳定性.本工作证明,类石墨碳修饰是一种可以广泛借鉴的有效提升半导体材料光催化活性和光稳定性的可行方法.

关键词: 光催化, ZnO纳米棒阵列, 类石墨碳, 电荷转移, 光稳定性, 二氧化碳还原

Abstract:

Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide (ZnO)-based photocatalysts. In this paper, we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays (NRAs) with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation. ZnO NRA/C-x (x=005, 01, 02, and 03) nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose (0.05, 0.1, 0.2, and 0.3 g) as a carbon source via a hydrothermal method. X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating, as evidenced by the detected C-O-Zn bond and the C-C, C-O and C=O bonds, respectively. While the basic structure of ZnO remains unchanged, the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids. The photoluminescence (PL) intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA, indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport, which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction. More importantly, a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.

Key words: Photocatalysis, ZnO nanorod array, Graphitic carbon, Charge transfer, Photostability, CO2 reduction