催化学报 ›› 2018, Vol. 39 ›› Issue (10): 1672-1682.DOI: 10.1016/S1872-2067(18)63115-8

• 论文 • 上一篇    下一篇

高压放电-光催化剂体系中低温等离子对g-C3N4的影响

王小平, 陈义霞, 傅敏, 陈咨含, 黄秋林   

  1. 重庆工商大学环境与资源学院, 重庆市催化与环境新材料重点实验室, 重庆 400067
  • 收稿日期:2018-04-15 修回日期:2018-05-26 出版日期:2018-10-18 发布日期:2018-08-03
  • 通讯作者: 王小平
  • 基金资助:

    国家自然科学基金(21406022);重庆市科学技术委员会(cstc2015jcyjA20017,cstc2017shmsA20015,cstc2016shmszx20012);重庆市教育委员会(Kj1500610);重庆工商大学重点实验室开放项目(1556034).

Effect of high-voltage discharge non-thermal plasma on g-C3N4in a plasma-photocatalyst system

Xiaoping Wang, Yixia Chen, Min Fu, Zihan Chen, Qiulin Huang   

  1. College of Environment and Resources, Chongqing Key Laboratory of Catalysis and Environmental New Material, Chongqing Technology and Business University, Chongqing 400067, China
  • Received:2018-04-15 Revised:2018-05-26 Online:2018-10-18 Published:2018-08-03
  • Contact: 10.1016/S1872-2067(18)63115-8
  • Supported by:

    This work was supported by National Natural Science Foundation of China (21406022), Chongqing Science and Technology Commission (cstc2015jcyjA20017, cstc2017shmsA20015, cstc2016shmszx20012), Chongqing Education Commission (Kj1500610), and Key Laboratory of Natural Medicine Research of Chongqing (1556034).

摘要:

高压放电能产生物理和化学效应,如高能电子(e*)、电场、紫外光、可见光和活性物质(·OH,H·,O·,·O2-,O3,N·,NOx)等,这些放电效应直接或间接应用于污染物的去除和材料的表面改性.在环境领域中,很多研究都关注于高压放电体系中活性物质的产生和利用,而忽视了物理作用,致使处理污染物的能量利用效率不高.近年来,为了提升能量效率,在放电系统中添加光催化剂的研究越来越多.放电产生的物理和化学效应提升了活性物质的产量,从而增强污染物的去除效率.然而,关于高压放电产生的活性物质和物理效应对光催化剂的影响缺乏研究.g-C3N4光催化剂是无毒、耐高温、低成本的非金属半导体,在环境与能源方面应用较广,但至今研究g-C3N4与低温等离子体协同处理污染物较少.为了使等离子体-g-C3N4系统能在环境中得到应用,首要解决的是高压放电对光催化剂影响的问题,从而为后期的研究奠定基础.
本研究选用放电均匀、稳定、能产生高电子密度的介质阻挡放电(DBD)对g-C3N4进行处理.在不同电气参数(放电电压和放电时间)对g-C3N4进行处理,用处理前后的g-C3N4光催化降解10mg/L的亚甲基蓝检测其光催化活性,并对其表面的物理结构和化学特征进行表征.结果发现在低放电电压的长时间放电会降低g-C3N4的催化活性,而在高放电电压的较短时间内会增强光催化剂的催化性能,随着放电时间的延长,催化活性会先降低再上升.根据XPS表征结果,放电处理后的g-C3N4表面有化学键的破坏和新键的形成.在放电处理过程中,加入光催化剂会增强放电强度,而且亲水官能团(-OH,-COOH,-NO2)的增加也会使放电强度增强,这与光催化剂对放电间隙的空间电荷吸附量有关.结合g-C3N4表面表征结果,发现g-C3N4的表面物理结构随着放电时间的延长层层破坏,其表面化学官能团也发生周期性变化,这些变化都会影响g-C3N4的光催化剂活性.如果等离子体-g-C3N4系统要应用于环境治理,光催化剂需避免与放电间隙接触,使光催化剂既能利用高压放电产生的光和其他物理效应,也能不受到低温等离子体的影响.

关键词: g-C3N4, 低温等离子体, 光催化活性, 物理结构, 化学特性

Abstract:

The synergistic effect of high voltage discharge non-thermal plasma (NTP) and photocatalysts on contaminant removal has repeatedly confirmed by plenty of researches. Most previous plasma-photocatalyst synergistic systems focused on the utilization of the ultraviolet light but ignored the visible light generated by high voltage discharge. Graphitic carbon nitride (g-C3N4), a metal-free semiconductor that exhibits high chemical stability, can utilize both the ultraviolet and visible light from high voltage discharge. However, the synergistic system of NTP and g-C3N4 has been researched little. In this paper, the effect of NTP generated by dielectric barrier discharge (DBD) on g-C3N4is studied by comparing the photocatalytic activities, the surface physical structure and the surface chemical characteristics of pristine and plasma treated g-C3N4. Experimental results indicate that the DBD plasma can change the physical structure and the chemical characteristics and to further affect the photocatalytic activity of g-C3N4. The effect of NTP on g-C3N4is associated with the discharge intensity and the discharge time. For a long time scale, the effect of NTP on g-C3N4 photocatalysts presents a periodic change trend.

Key words: g-C3N4, Non-thermal plasma, Photocatalytic activity, Physical structure, Chemical characteristic